- Title
- Synthesis of modified zinc oxide nanoparticles using pneumatic spray pyrolysis for solar cell application
- Creator
- Ntozakhe, Luyolo
- Subject
- Zinc oxide -- Synthesis Nanoparticles
- Date
- 2017
- Type
- Thesis
- Type
- Masters
- Type
- MSc
- Identifier
- http://hdl.handle.net/10353/5862
- Identifier
- vital:29408
- Description
- In this work, the pneumatic spray pyrolysis was used to synthesize un-doped and carbon doped zinc oxide (ZnO) nanoparticles. The zinc acetate, tetrabutylammonium bromide and ethanol were used as starting materials for the desired ZnO nanoparticles and the prepared samples were annealed at 400 oC in the furnace. The as synthesized un-doped and carbon doped ZnO NPs were evaluated using X-ray diffraction (XRD), Scanning electron microscope (SEM), Energy dispersive x-ray spectroscopy (EDX), High-resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and Ultraviolet-visible spectroscopy (UV-Vis). XRD analysis of the synthesized NPs revealed peaks at 31.90°, 34.50°, 36.34°, 47.73°, 56.88°, 63.04°, 68.20°, and 77.33° belonging to the hexagonal Wurtzite ZnO crystal structure. The incorporation of C species into ZnO lattice was cross examined by monitoring the peak positions of the (100), (002) and (001) planes. These three main peaks of C-ZnO NPs show a peak shift to higher 2θ values which indicates substitutional carbon doping in ZnO NPs. SEM analysis has revealed that the as synthesized NPs have spherical shape and the morphology of the NPs change as the concentration of carbon increases. The EDX spectra of both un-doped and doped ZnO nanoparticles have revealed prominent peaks at 0.51 keV, 1.01 keV, 1.49 keV, 8.87 keV and 9.86 keV. Peaks at, X-ray energies of 0.51 keV and 1.01 keV respectively represent the emissions from the K-shell of oxygen and L-shell of zinc. The L-shell emission at 1.01 keV is considered as convolution of Zn 2p3/2 and Zn 2p1/2 photoelectron energies. The occurrence of these peaks in the EDX endorses the existence of Zn and O atoms in the PSP prepared samples. HRTEM analysis has revealed NPs size modal range from 6.65-14.21 nm for the PSP synthesized samples which is in mutual agreement with the XRD data calculated values. More over the selected area diffraction images displaying the fact that only the diffraction planes of (101), (002) and (100) are responsible for the diffraction pattern belonging to Wurtzite ZnO. RS analysis has revealed that the un-doped ZnO and doped ZnO samples have characteristic Raman vibration modes at 325 cm-1, and 434 cm-1 belonging to Wurtzite ZnO structure. Moreover, the prominent peak at 434 cm-1 which is the characteristic peak of E2(2) (high) mode of the Wurtzite ZnO and the E2(2) (high) has been red shifted by 4 cm-1, as compared to that found in the bulk ZnO. Additionally, the effect of carbon doping through Raman spectroscopy peak shifts of the E2(2) (high) mode, A1(LO) mode and multi-phonon has also been considered and discussed in detail. UV-Vis diffuse reflectance spectroscopy has revealed a red shift of the absorption edge with increase in C doping. Finally, the effect of nano-crystallite size and gradual prominence of C into ZnO lattice due to increase in C doping concentration in the PSP prepared nanoparticles was meticulously elaborated through Raman Spectroscopy analysis.
- Format
- 119 leaves
- Format
- Publisher
- University of Fort Hare
- Publisher
- Faculty of Science and Agriculture
- Language
- English
- Rights
- University of Fort Hare
- Hits: 546
- Visitors: 588
- Downloads: 69
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details Download | SOURCE1 | Synthesis of modified zinc oxide nanoparticles using pneumatic spray pyrolysis for solar cell application | 5 MB | Adobe Acrobat PDF | View Details Download |