A comparative study on the sensitive detection of hydroxyl radical using thiol-capped CdTe and CdTe/ZnS quantum dots
- Adegoke, Oluwasesan, Nyokong, Tebello
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242778 , vital:51077 , xlink:href="https://doi.org/10.1007/s10895-012-1089-2"
- Description: Four types of water-soluble luminescent quantum dots (QDs) whose surface was functionlaized with thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH), were investigated for the sensitive and selective detection of hydroxyl radical (●OH) in aqueous media. It was found that the type of capping agent and QD influenced the sensitivity of the probe. The order of sensitivity of the probe was: GSH-CdTe@ZnS > MPA-CdTe@ZnS > TGA-CdTe > MPA-CdTe QDs. Under the optimum conditions, a limit of detection as low as 8.5 × 10-8 M was obtained using GSH-CdTe@ZnS. The effects of foreign reactive oxygen species and the Fenton reactants and products as possible interferences on the proposed probe were negligible for CdTe@ZnS QDs. Besides, experimental results indicated that CdTe@ZnS QDs were more attractive for the selective recognition of ●OH than CdTe QDs. The mechanistic reaction pathway between the QDs and ●OH is proposed.
- Full Text:
- Date Issued: 2012
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242778 , vital:51077 , xlink:href="https://doi.org/10.1007/s10895-012-1089-2"
- Description: Four types of water-soluble luminescent quantum dots (QDs) whose surface was functionlaized with thioglycolic acid (TGA), 3-mercaptopropionic acid (MPA), or glutathione (GSH), were investigated for the sensitive and selective detection of hydroxyl radical (●OH) in aqueous media. It was found that the type of capping agent and QD influenced the sensitivity of the probe. The order of sensitivity of the probe was: GSH-CdTe@ZnS > MPA-CdTe@ZnS > TGA-CdTe > MPA-CdTe QDs. Under the optimum conditions, a limit of detection as low as 8.5 × 10-8 M was obtained using GSH-CdTe@ZnS. The effects of foreign reactive oxygen species and the Fenton reactants and products as possible interferences on the proposed probe were negligible for CdTe@ZnS QDs. Besides, experimental results indicated that CdTe@ZnS QDs were more attractive for the selective recognition of ●OH than CdTe QDs. The mechanistic reaction pathway between the QDs and ●OH is proposed.
- Full Text:
- Date Issued: 2012
CdTe quantum dots functionalized with 4-amino-2, 2, 6, 6-tetramethylpiperidine-N-oxide as luminescent nanoprobe for the sensitive recognition of bromide ion
- Adegoke, Oluwasesan, Hosten, Eric C, McCleland, Cedric, Nyokong, Tebello
- Authors: Adegoke, Oluwasesan , Hosten, Eric C , McCleland, Cedric , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/244393 , vital:51253 , xlink:href="https://doi.org/10.1016/j.aca.2012.01.040"
- Description: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.
- Full Text:
- Date Issued: 2012
- Authors: Adegoke, Oluwasesan , Hosten, Eric C , McCleland, Cedric , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/244393 , vital:51253 , xlink:href="https://doi.org/10.1016/j.aca.2012.01.040"
- Description: A novel bromide ion-selective modified nanoprobe sensor based on 4-amino-2,2,6,6-tetramethylpiperidine-N-oxide (4AT)-functionalized CdTe quantum dots (QDs-4AT) has been developed. Fluorescence quenching of the QDs by 4AT was observed. The functionalized QDs-4AT nanoprobe allowed a highly sensitive determination of bromide ion via analyte-induced change in the photoluminescence (fluorescence recovery) of the modified QDs. A detection limit of 0.6 nM of bromide ion was obtained, while the interfering effect of other inorganic cations and anions was investigated to examine the selectivity of the nanoprobe. The linear range was between 0.01 and 0.13 μM. Combined fluorescence lifetime and electron paramagnetic resonance measurements confirmed electron transfer processes between bromide ion and QDs-4AT.
- Full Text:
- Date Issued: 2012
Interaction of CdTe quantum dots with 2, 2-diphenyl-1-picrylhydrazyl free radical
- Adegoke, Oluwasesan, Chidawanyika, Wadzanai J U, Nyokong, Tebello
- Authors: Adegoke, Oluwasesan , Chidawanyika, Wadzanai J U , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245751 , vital:51402 , xlink:href="https://doi.org/10.1007/s10895-011-1012-2"
- Description: The interaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH●) free radical with thiol-capped CdTe quantum dots (QDs) has been studied by UV–vis spectroscopy, steady state and time resolved fluorescence measurements. Addition of DPPH● radical to CdTe QDs resulted in fluorescence quenching. The interaction occurs through static quenching as this was confirmed by fluorescence lifetime measurements. Time course absorption studies indicates that DPPH● may be reduced by interaction with QDs to the substituted hydrazine form (2,2-diphenyl-1-picrylhydrazine) DPPH-H. The mechanism of fluorescence quenching of CdTe QDs by DPPH● is proposed.
- Full Text:
- Date Issued: 2012
- Authors: Adegoke, Oluwasesan , Chidawanyika, Wadzanai J U , Nyokong, Tebello
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/245751 , vital:51402 , xlink:href="https://doi.org/10.1007/s10895-011-1012-2"
- Description: The interaction of 2,2-diphenyl-1-picrylhydrazyl (DPPH●) free radical with thiol-capped CdTe quantum dots (QDs) has been studied by UV–vis spectroscopy, steady state and time resolved fluorescence measurements. Addition of DPPH● radical to CdTe QDs resulted in fluorescence quenching. The interaction occurs through static quenching as this was confirmed by fluorescence lifetime measurements. Time course absorption studies indicates that DPPH● may be reduced by interaction with QDs to the substituted hydrazine form (2,2-diphenyl-1-picrylhydrazine) DPPH-H. The mechanism of fluorescence quenching of CdTe QDs by DPPH● is proposed.
- Full Text:
- Date Issued: 2012
- «
- ‹
- 1
- ›
- »