Biotic resistance towards Hydrellia egeriae, a biological control agent for the aquatic weed Egeria densa, in South Africa
- Moffat, Rosali, van Noort, Simon, Coetzee, Julie A, Hill, Martin P
- Authors: Moffat, Rosali , van Noort, Simon , Coetzee, Julie A , Hill, Martin P
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451299 , vital:75038 , http://dx.doi.org/10.17159/2254-8854/2024/a15718
- Description: Egeria densa is a submerged aquatic weed that can grow into dense monocultures in rivers and dams in South Africa, which negatively affects ecosystem functioning and services. The biological control agent Hydrellia egeriae Rodrigues-Júnior (Diptera: Ephydridae) was first released against Egeria densa Planchon (Hydrocharitaceae) in South Africa in 2018. Biotic resistance in an introduced range can have negative impacts on the ability of a biological control agent to establish and exert top-down pressure. Dipteran and lepidopteran species that are used as biological control agents are often susceptible to higher levels of parasitism in their introduced range than biological control agents from other insect orders. In addition, ecological analogues that are present in South Africa, make H. egeriae particularly vulnerable to biotic resistance. Considering this, post-release surveys were conducted to investigate if native parasitoids will extend their host range to include H. egeriae. Chaenusa seminervata van Achterberg, C. anervata van Achterberg (Braconidae: Alysiinae: Dacnusini) and Ademon lagarosiphonae van Achterberg (Braconidae: Opiinae) were reared from field-collected H. egeriae pupae, within a year of its release. These braconid parasitoids were previously recorded from a native herbivore, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae).
- Full Text:
- Date Issued: 2024
- Authors: Moffat, Rosali , van Noort, Simon , Coetzee, Julie A , Hill, Martin P
- Date: 2024
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451299 , vital:75038 , http://dx.doi.org/10.17159/2254-8854/2024/a15718
- Description: Egeria densa is a submerged aquatic weed that can grow into dense monocultures in rivers and dams in South Africa, which negatively affects ecosystem functioning and services. The biological control agent Hydrellia egeriae Rodrigues-Júnior (Diptera: Ephydridae) was first released against Egeria densa Planchon (Hydrocharitaceae) in South Africa in 2018. Biotic resistance in an introduced range can have negative impacts on the ability of a biological control agent to establish and exert top-down pressure. Dipteran and lepidopteran species that are used as biological control agents are often susceptible to higher levels of parasitism in their introduced range than biological control agents from other insect orders. In addition, ecological analogues that are present in South Africa, make H. egeriae particularly vulnerable to biotic resistance. Considering this, post-release surveys were conducted to investigate if native parasitoids will extend their host range to include H. egeriae. Chaenusa seminervata van Achterberg, C. anervata van Achterberg (Braconidae: Alysiinae: Dacnusini) and Ademon lagarosiphonae van Achterberg (Braconidae: Opiinae) were reared from field-collected H. egeriae pupae, within a year of its release. These braconid parasitoids were previously recorded from a native herbivore, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae).
- Full Text:
- Date Issued: 2024
Do thermal requirements of Dichrorampha odorata, a shoot-boring moth for the biological control of Chromolaena odorata, explain its failure to establish in South Africa?
- Nqayi, Slindile B, Zachariades, Costas, Coetzee, Julie A, Hill, Martin P, Chidawanyika, Frank, Uyi, Osariyekemwen O, McConnachie, Andrew J
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Nqayi, Slindile B , Zachariades, Costas , Coetzee, Julie A , Hill, Martin P , Chidawanyika, Frank , Uyi, Osariyekemwen O , McConnachie, Andrew J
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416851 , vital:71391 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a14"
- Description: Chromolaena odorata (L.) RM King and H Rob. (Asteraceae) has been subject to a biological control programme in South Africa for over three decades. A shoot-tip boring moth, Dichrorampha odorata Brown and Zachariades (Lepidoptera: Tortricidae), originating from Jamaica, was released as a biological control agent in 2013 but despite the release of substantial numbers of the insect, it has not established a permanent field population. Because climate incompatibility is a major constraint for classical biological control of invasive plants, and based on the differences in climate between Jamaica and South Africa and field observations at release sites, aspects of the thermal physiology of D. odorata were investigated to elucidate reasons for its failure to establish. Developmental time decreased with increasing temperatures ranging from 20 °C to 30 °C, with incomplete development for immature stages at 18 °C and 32 °C. The developmental threshold, t, was calculated as 8.45 °C with 872.4 degree-days required to complete development (K). A maximum of 6.5 generations per year was projected for D. odorata in South Africa, with the heavily infested eastern region of the country being the most eco-climatically suitable for establishment. The lower lethal temperature (LLT50) of larvae and adults was –4.5 and 1.8 °C, respectively. The upper lethal temperature (ULT50) for larvae was 39.6 °C whilst that of adults was 41.0 °C. Larvae thus had better cold tolerance compared to adults whereas adults had better heat tolerance compared to larvae. The critical thermal (CT) limits for adults were 3.4 ± 0.07 to 43.7 ± 0.12 °C. Acclimation at 20 °C for 7 days resulted in increased cold and heat tolerance with a CTmin and CTmax of 1.9 ± 0.06 and 44.4 ± 0.07 °C respectively, compared to the relative control, acclimated at 25 °C. Acclimation at 30 °C improved neither cold (CTmin: 5.9 ± 0.08 °C) nor heat tolerance (CTmax: 42.9 ± 0.10 °C). These results suggest that thermal requirements fall within field temperatures and are thus not the main constraining factor leading to poor establishment of D. odorata in South Africa.
- Full Text:
- Date Issued: 2023
Evaluating the establishment of a new water hyacinth biological control agent in South Africa
- Miller, Benjamin E, Coetzee, Julie A, Hill, Martin P
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451399 , vital:75046 , http://dx.doi.org/10.17159/2254-8854/2023/a15613
- Description: Megamelus scutellaris Berg (Hemiptera: Delphacidae) is the most recent of nine biological control agents developed to manage invasive water hyacinth, Pontederia (= Eichhornia) crassipes Mart.(Pontederiaceae), in South Africa. More than a million M. scutellaris have been mass-reared and released since the first introduction of the agent into South Africa in 2013, successfully establishing overwintering populations at 32 sites in seven of the nine provinces. Establishment has also been recorded at seven of these sites through natural dispersal from sites where they had established. Inundative releases, where large numbers of M. scutellaris are released regularly, have resulted in excellent establishment, and caused a significant reduction in water hyacinth cover in areas where, historically, biological control seemed unlikely due to excessive eutrophication. Although M. scutellaris has established well throughout South Africa through classical biological control methods, this study also showed that inundative releases of biological control agents over multiple seasons results in the most effective control of the weed, especially at cool temperate and eutrophic sites.
- Full Text:
- Date Issued: 2023
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451399 , vital:75046 , http://dx.doi.org/10.17159/2254-8854/2023/a15613
- Description: Megamelus scutellaris Berg (Hemiptera: Delphacidae) is the most recent of nine biological control agents developed to manage invasive water hyacinth, Pontederia (= Eichhornia) crassipes Mart.(Pontederiaceae), in South Africa. More than a million M. scutellaris have been mass-reared and released since the first introduction of the agent into South Africa in 2013, successfully establishing overwintering populations at 32 sites in seven of the nine provinces. Establishment has also been recorded at seven of these sites through natural dispersal from sites where they had established. Inundative releases, where large numbers of M. scutellaris are released regularly, have resulted in excellent establishment, and caused a significant reduction in water hyacinth cover in areas where, historically, biological control seemed unlikely due to excessive eutrophication. Although M. scutellaris has established well throughout South Africa through classical biological control methods, this study also showed that inundative releases of biological control agents over multiple seasons results in the most effective control of the weed, especially at cool temperate and eutrophic sites.
- Full Text:
- Date Issued: 2023
Know thy enemy: Investigating genetic contributions from putative parents of invasive Nymphaea mexicana hybrids in South Africa as part of efforts to develop biological control
- Reid, Megan K, Paterson, Iain D, Coetzee, Julie A, Gettys, Lyn A, Hill, Martin P
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
Love at first bite? Pre-release surveys reveal a novel association between a native weevil and the invasive Nymphaea mexicana Zuccarini (Nymphaeaceae) in South Africa
- Reid, Megan K, Hill, Martin P, Coetzee, Julie A
- Authors: Reid, Megan K , Hill, Martin P , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416866 , vital:71392 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a19"
- Description: Classical biological control aims to suppress alien invasive plant populations by introducing host-specific natural enemies from the native range. This relies on the assumption that invasive plant populations in the invaded range benefit from the release of natural enemies. Pre-release surveys in the invaded range are a useful way to determine if enemy release applies to a particular invasive alien plant, and to determine what other factors may contribute to the invasion. Similarly, pre-release surveys gather information that can be used to compare invaded sites before and after the release of biological control agents and may also identify whether natural enemies have been accidentally introduced into the country. Pre-release surveys were conducted in South Africa on the invasive Nymphaea mexicana Zuccarini (Nymphaeaceae) to gather such information about this species, for which a biological control programme is being developed. There was lower diversity and abundance of herbivores in the native range compared to South Africa, suggesting that N. mexicana does experience enemy release at most sites in South Africa. This support for the enemy release hypothesis justifies the investment in biological control for its management. However, a native weevil, Bagous longulus Gyllenhal (Coleoptera: Curculionidae), was found feeding and reproducing on N. mexicana at three sites, resulting in damage to the leaves and suggesting that a novel association has formed between these species. Bagous longulus may have potential to be distributed to sites of N. mexicana where it is not present, though further investigation is necessary to confirm if its host range is suitable for this to be a safe endeavour. With the exception of sites where B. longulus was present, leaf sizes were large and damage was low, and there is no evidence that any natural enemies have been accidentally introduced from the native range. Findings such as these emphasise the importance of conducting thorough surveys during the development of biological control programmes.
- Full Text:
- Date Issued: 2023
- Authors: Reid, Megan K , Hill, Martin P , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/416866 , vital:71392 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v31_n1_a19"
- Description: Classical biological control aims to suppress alien invasive plant populations by introducing host-specific natural enemies from the native range. This relies on the assumption that invasive plant populations in the invaded range benefit from the release of natural enemies. Pre-release surveys in the invaded range are a useful way to determine if enemy release applies to a particular invasive alien plant, and to determine what other factors may contribute to the invasion. Similarly, pre-release surveys gather information that can be used to compare invaded sites before and after the release of biological control agents and may also identify whether natural enemies have been accidentally introduced into the country. Pre-release surveys were conducted in South Africa on the invasive Nymphaea mexicana Zuccarini (Nymphaeaceae) to gather such information about this species, for which a biological control programme is being developed. There was lower diversity and abundance of herbivores in the native range compared to South Africa, suggesting that N. mexicana does experience enemy release at most sites in South Africa. This support for the enemy release hypothesis justifies the investment in biological control for its management. However, a native weevil, Bagous longulus Gyllenhal (Coleoptera: Curculionidae), was found feeding and reproducing on N. mexicana at three sites, resulting in damage to the leaves and suggesting that a novel association has formed between these species. Bagous longulus may have potential to be distributed to sites of N. mexicana where it is not present, though further investigation is necessary to confirm if its host range is suitable for this to be a safe endeavour. With the exception of sites where B. longulus was present, leaf sizes were large and damage was low, and there is no evidence that any natural enemies have been accidentally introduced from the native range. Findings such as these emphasise the importance of conducting thorough surveys during the development of biological control programmes.
- Full Text:
- Date Issued: 2023
Performance and field host range of the life stages of Cornops aquaticum, a biological control agent of water hyacinth
- Franceschini, M Celeste, Hill, Martin P, Fuentes-Rodríguez, Daniela, Gervazoni, Paula B, Sabater, Lara M, Coetzee, Julie A
- Authors: Franceschini, M Celeste , Hill, Martin P , Fuentes-Rodríguez, Daniela , Gervazoni, Paula B , Sabater, Lara M , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424814 , vital:72186 , xlink:href="https://doi.org/10.1111/eea.13354"
- Description: Host specificity determination of weed biocontrol agents has historically relied on evidence generated through quarantine trials in the region of introduction. These trials could give ‘false positive’ results due to a maximum type I error probability, and where possible, more research under field conditions should be conducted in the region of origin. The oligophagous, semiaquatic grasshopper, Cornops aquaticum Bruner (Orthoptera: Acrididae, Tetrataeniini), was released in South Africa for the biological control of Pontederia crassipes Pellegrini and Horn (Pontederiaceae). The aim of this study was to assess how the performance and field host range of C. aquaticum varies according to its stages of development, and how this contributes to the understanding of the relationship between the fundamental (laboratory-based) and the ecological (field-based) host range of this grasshopper, and its implications for water hyacinth biocontrol. We conducted post-release laboratory no-choice trials, confining early instars (instars 1 and 2), later instars (instars 3–6), and adult females and males in mesh cages, to determine insect performance on wetland plants growing in sympatry with P. crassipes. Also, gut analysis from field-collected C. aquaticum was done to determine the ecological host range of this insect, identifying epidermal tissue of consumed plants. In no-choice trials, survival rates of the later instars and adult C. aquaticum were similar on Pistia stratiotes L. (Araceae), Oxycaryum cubense (Poepp. and Kunth) Lye (Cyperaceae), and P. crassipes. However, under field conditions, P. crassipes and the congeneric Pontederia azurea Sw. were the only plant contents in the guts of early instars and the most abundant species in later instars and adults. The results support the hypothesis that C. aquaticum is an oligophagous insect on the genus Pontederia, and that different life stages should be considered when conducting host-specificity trials in externally feeding mobile herbivore species. Diet composition of field-collected insects thus could help detect false positives in laboratory trials, being an additional and realistic approach in understanding and predicting the selection processes of the insect in the new environment. Retrospective analysis of potential agents that were rejected due to lack of host-specificity, using the methods from this study, could add a suite of additional agents to programs where invasive weeds remain unmanaged.
- Full Text:
- Date Issued: 2023
- Authors: Franceschini, M Celeste , Hill, Martin P , Fuentes-Rodríguez, Daniela , Gervazoni, Paula B , Sabater, Lara M , Coetzee, Julie A
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/424814 , vital:72186 , xlink:href="https://doi.org/10.1111/eea.13354"
- Description: Host specificity determination of weed biocontrol agents has historically relied on evidence generated through quarantine trials in the region of introduction. These trials could give ‘false positive’ results due to a maximum type I error probability, and where possible, more research under field conditions should be conducted in the region of origin. The oligophagous, semiaquatic grasshopper, Cornops aquaticum Bruner (Orthoptera: Acrididae, Tetrataeniini), was released in South Africa for the biological control of Pontederia crassipes Pellegrini and Horn (Pontederiaceae). The aim of this study was to assess how the performance and field host range of C. aquaticum varies according to its stages of development, and how this contributes to the understanding of the relationship between the fundamental (laboratory-based) and the ecological (field-based) host range of this grasshopper, and its implications for water hyacinth biocontrol. We conducted post-release laboratory no-choice trials, confining early instars (instars 1 and 2), later instars (instars 3–6), and adult females and males in mesh cages, to determine insect performance on wetland plants growing in sympatry with P. crassipes. Also, gut analysis from field-collected C. aquaticum was done to determine the ecological host range of this insect, identifying epidermal tissue of consumed plants. In no-choice trials, survival rates of the later instars and adult C. aquaticum were similar on Pistia stratiotes L. (Araceae), Oxycaryum cubense (Poepp. and Kunth) Lye (Cyperaceae), and P. crassipes. However, under field conditions, P. crassipes and the congeneric Pontederia azurea Sw. were the only plant contents in the guts of early instars and the most abundant species in later instars and adults. The results support the hypothesis that C. aquaticum is an oligophagous insect on the genus Pontederia, and that different life stages should be considered when conducting host-specificity trials in externally feeding mobile herbivore species. Diet composition of field-collected insects thus could help detect false positives in laboratory trials, being an additional and realistic approach in understanding and predicting the selection processes of the insect in the new environment. Retrospective analysis of potential agents that were rejected due to lack of host-specificity, using the methods from this study, could add a suite of additional agents to programs where invasive weeds remain unmanaged.
- Full Text:
- Date Issued: 2023
Best of both worlds: The thermal physiology of Hydrellia egeriae, a biological control agent for the submerged aquatic weed, Egeria densa in South Africa
- Smith, Rosali, Coetzee, Julie A, Hill, Martin P
- Authors: Smith, Rosali , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417913 , vital:71494 , xlink:href="https://doi.org/10.1007/s10526-022-10142-w"
- Description: The submerged aquatic weed, Egeria densa Planch. (Hydrocharitaceae) or Brazilian waterweed, is a secondary invader of eutrophic freshwater systems in South Africa, following the successful management of floating aquatic weeds. In 2018, the leaf and stem-mining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae), was released against E. densa, the first agent released against a submerged aquatic weed in South Africa. During its life stages, the biological control agent is exposed to two environments, air and water. The thermal physiology of both life stages was investigated to optimize agent establishment through fine-tuned release strategies. The thermal physiological limits of H. egeriae encompassed its host plant’s optimal temperature range of 10 to 35 °C, with lower and upper critical temperatures of 2.6 to 47.0 °C, lower and upper lethal temperatures of − 5.6 and 40.6 °C for adults, and − 6.3 to 41.3 °C for larvae. Results from development time experiments and degree-day accumulation showed that the agent is capable of establishing at all E. densa sites in South Africa, with between 6.9 and 8.3 generations per year. However, cold temperatures (14 °C) prolonged the agent’s development time to three months, allowing it to only develop through one generation in winter. Predictions obtained from laboratory thermal physiology experiments corroborates field data, where the agent has established at all the sites it was released.
- Full Text:
- Date Issued: 2022
- Authors: Smith, Rosali , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417913 , vital:71494 , xlink:href="https://doi.org/10.1007/s10526-022-10142-w"
- Description: The submerged aquatic weed, Egeria densa Planch. (Hydrocharitaceae) or Brazilian waterweed, is a secondary invader of eutrophic freshwater systems in South Africa, following the successful management of floating aquatic weeds. In 2018, the leaf and stem-mining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae), was released against E. densa, the first agent released against a submerged aquatic weed in South Africa. During its life stages, the biological control agent is exposed to two environments, air and water. The thermal physiology of both life stages was investigated to optimize agent establishment through fine-tuned release strategies. The thermal physiological limits of H. egeriae encompassed its host plant’s optimal temperature range of 10 to 35 °C, with lower and upper critical temperatures of 2.6 to 47.0 °C, lower and upper lethal temperatures of − 5.6 and 40.6 °C for adults, and − 6.3 to 41.3 °C for larvae. Results from development time experiments and degree-day accumulation showed that the agent is capable of establishing at all E. densa sites in South Africa, with between 6.9 and 8.3 generations per year. However, cold temperatures (14 °C) prolonged the agent’s development time to three months, allowing it to only develop through one generation in winter. Predictions obtained from laboratory thermal physiology experiments corroborates field data, where the agent has established at all the sites it was released.
- Full Text:
- Date Issued: 2022
Invasive alien aquatic plant species management drives aquatic ecosystem community recovery: An exploration using stable isotope analysis
- Motitsoe, Samuel N, Hill, Jaclyn M, Coetzee, Julie A, Hill, Martin P
- Authors: Motitsoe, Samuel N , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423527 , vital:72069 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104995"
- Description: The socio-economic and ecological impacts of invasive alien aquatic plant (IAAP) species have been well studied globally. However less is known about ecosystem recovery following the management of IAAP species. This study employed a before-after study design to investigate ecological recovery following the management of Salvinia molesta D.S. Mitchell, at four field sites in South Africa. We hypothesized that the presence of S. molesta would have a negative impact on the ecosystem food web structure, and that following S. molesta control, the systems would show positive ecosystem recovery. Aquatic macroinvertebrate and macrophyte samples collected before and after mechanical or biological control of S. molesta, were analysed for δ13C and δ15N stable isotopes. Salvinia molesta infestations negatively impacted the food web structure, indicated by reduced food chain length, trophic diversity and basal resources. This represented an altered aquatic food web structure, that in some cases, led to the collapse of the aquatic community. In contrast, after either mechanical or biological control, there were increases in food chain length, trophic diversity and abundance of energy resources accessed by consumers, indicating improved food web structure. Although the study showed positive ecosystem recovery following control, we noted that each control method followed a different recovery trajectory. We conclude that S. molesta invasions reduce aquatic biodiversity and alter ecosystem trophic dynamics and related ecosystem processes, necessitating control.
- Full Text:
- Date Issued: 2022
- Authors: Motitsoe, Samuel N , Hill, Jaclyn M , Coetzee, Julie A , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423527 , vital:72069 , xlink:href="https://doi.org/10.1016/j.biocontrol.2022.104995"
- Description: The socio-economic and ecological impacts of invasive alien aquatic plant (IAAP) species have been well studied globally. However less is known about ecosystem recovery following the management of IAAP species. This study employed a before-after study design to investigate ecological recovery following the management of Salvinia molesta D.S. Mitchell, at four field sites in South Africa. We hypothesized that the presence of S. molesta would have a negative impact on the ecosystem food web structure, and that following S. molesta control, the systems would show positive ecosystem recovery. Aquatic macroinvertebrate and macrophyte samples collected before and after mechanical or biological control of S. molesta, were analysed for δ13C and δ15N stable isotopes. Salvinia molesta infestations negatively impacted the food web structure, indicated by reduced food chain length, trophic diversity and basal resources. This represented an altered aquatic food web structure, that in some cases, led to the collapse of the aquatic community. In contrast, after either mechanical or biological control, there were increases in food chain length, trophic diversity and abundance of energy resources accessed by consumers, indicating improved food web structure. Although the study showed positive ecosystem recovery following control, we noted that each control method followed a different recovery trajectory. We conclude that S. molesta invasions reduce aquatic biodiversity and alter ecosystem trophic dynamics and related ecosystem processes, necessitating control.
- Full Text:
- Date Issued: 2022
It's a numbers game: inundative biological control of water hyacinth (Pontederia crassipes), using Megamelus scutellaris (Hemiptera: Delphacidae) yields success at a high elevation, hypertrophic reservoir in South Africa
- Coetzee, Julie A, Miller, Benjamin E, Kinsler, David, Sebola, Keneilwe, Hill, Martin P
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022
- Authors: Coetzee, Julie A , Miller, Benjamin E , Kinsler, David , Sebola, Keneilwe , Hill, Martin P
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417749 , vital:71483 , xlink:href="https://doi.org/10.1080/09583157.2022.2109594"
- Description: Classical biological control of water hyacinth in South Africa has been constrained by cool winter temperatures that limit population growth of the biological control agents, and highly eutrophic waters which enhance plant growth. However, inundative releases of the control agent, Megamelus scutellaris (Hemiptera: Delphacidae), at the Hartbeespoort Dam, South Africa, suggest that water hyacinth can be managed successfully using biological control as a standalone intervention for the first time in the absence of herbicide operations, despite eutrophication and a temperate climate. Sentinel-2 satellite images were used to measure the reduction in water hyacinth cover from over 37% to less than 6% over two consecutive years since M. scutellaris was first released on the dam in 2018, while site surveys confirmed a corresponding increase in M. scutellaris population density from fewer than 500 insects/m2 in October 2019, to more than 6000 insects/m2 by March 2020. Inundative release strategies are recommended for the control of water hyacinth in South Africa at key stages of its invasion, particularly after winter, and flooding events.
- Full Text:
- Date Issued: 2022
A review of the biocontrol programmes against aquatic weeds in South Africa
- Coetzee, Julie A, Bownes, Angela, Martin, Grant D, Miller, Benjamin E, Smith, Rosalie, Weyl, Philip S R, Hill, Martin P
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosalie , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
- Authors: Coetzee, Julie A , Bownes, Angela , Martin, Grant D , Miller, Benjamin E , Smith, Rosalie , Weyl, Philip S R , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406965 , vital:70326 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a18"
- Description: Biological control (biocontrol) against invasive macrophytes is one of the longest standing programmes in South Africa, initiated in the 1970s against water hyacinth, Pontederia crassipes Mart. (Pontederiaceae). Since then, 15 agent species (13 insects, one mite and one pathogen) have been released against six weeds, most of which are floating macrophytes, with excellent levels of success. The release of the water hyacinth planthopper Megamelus scutellaris Berg (Hemiptera: Delphacidae) in particular, has improved biocontrol prospects for water hyacinth since 2018. In the last decade, however, a new suite of submerged and rooted emergent invasive macrophytes has been targeted. The first release against a submerged macrophyte in South Africa, and the first release against Brazilian waterweed, Egeria densa Planch. (Hydrocharitaceae), anywhere in the world, was achieved with the release of a leafmining fly, Hydrellia egeriae Rodrigues-Júnior, Mathis and Hauser (Diptera: Ephydridae). Yellow flag, Iris pseudacorus L. (Iridaceae) and Mexican waterlily, Nymphaea mexicana Zucc. (Nymphaeaceae), have also been targeted for biocontrol for the first time worldwide, and are in the early stages of agent development. Post-release evaluations, long term monitoring and controlled experiments have highlighted the need for a more holistic approach to managing aquatic invasive plants in South Africa, whose presence is largely driven by eutrophication, resulting in regime shifts between floating and submerged invaded states.
- Full Text:
- Date Issued: 2021
The effects of elevated atmospheric CO2 concentration on the biological control of invasive aquatic weeds
- Baso, Nompumelelo C, Coetzee, Julie A, Ripley, Bradford S, Hill, Martin P
- Authors: Baso, Nompumelelo C , Coetzee, Julie A , Ripley, Bradford S , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419423 , vital:71643 , xlink:href="https://doi.org/10.1016/j.aquabot.2020.103348"
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
- Full Text:
- Date Issued: 2021
- Authors: Baso, Nompumelelo C , Coetzee, Julie A , Ripley, Bradford S , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419423 , vital:71643 , xlink:href="https://doi.org/10.1016/j.aquabot.2020.103348"
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
- Full Text:
- Date Issued: 2021
The role of mass-rearing in weed biological control projects in South Africa
- Hill, Martin P, Conlong, Desmond, Zachariades, Costas, Coetzee, Julie A, Paterson, Iain D, Miller, Benjamin E, Foxcroft, Llewellyn, Van der Westhuizen, Liamé
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
Biological control of Salvinia molesta (DS Mitchell) drives aquatic ecosystem recovery
- Motitsoe, Samuel N, Coetzee, Julie A, Hill, Jaclyn M, Hill, Martin P
- Authors: Motitsoe, Samuel N , Coetzee, Julie A , Hill, Jaclyn M , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444515 , vital:74247 , https://doi.org/10.3390/d12050204
- Description: Salvinia molesta D.S. Mitchell (Salviniaceae) is a damaging free-floating invasive alien macrophyte native to South America. The biological control programme against S. molesta by the weevil Cyrtobagous salviniae Calder and Sands (Erirhinidae) has been successful in controlling S. molesta infestations in the introduced range, however, there is some debate as to how biological control success is measured. This study measured the response of epilithic algae and aquatic macroinvertebrate communities in a S. molesta-dominated state and subsequently where the weed had been cleared by biological control, as a proxy for ecosystem recovery in a before–after control–impact mesocosm experiment.
- Full Text:
- Date Issued: 2020
- Authors: Motitsoe, Samuel N , Coetzee, Julie A , Hill, Jaclyn M , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444515 , vital:74247 , https://doi.org/10.3390/d12050204
- Description: Salvinia molesta D.S. Mitchell (Salviniaceae) is a damaging free-floating invasive alien macrophyte native to South America. The biological control programme against S. molesta by the weevil Cyrtobagous salviniae Calder and Sands (Erirhinidae) has been successful in controlling S. molesta infestations in the introduced range, however, there is some debate as to how biological control success is measured. This study measured the response of epilithic algae and aquatic macroinvertebrate communities in a S. molesta-dominated state and subsequently where the weed had been cleared by biological control, as a proxy for ecosystem recovery in a before–after control–impact mesocosm experiment.
- Full Text:
- Date Issued: 2020
Biological control of water lettuce, Pistia stratiotes L., facilitates macroinvertebrate biodiversity recovery: a mesocosm study
- Coetzee, Julie A, Langa, Susana D, Motitsoe, Samuel N, Hill, Martin P
- Authors: Coetzee, Julie A , Langa, Susana D , Motitsoe, Samuel N , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423967 , vital:72112 , xlink:href="https://doi.org/10.1007/s10750-020-04369-w"
- Description: Floating aquatic weed infestations have negative socio-economic and environmental consequences to the ecosystems they invade. Despite the long history of invasion by macrophytes, only a few studies focus on their impacts on biodiversity, while the ecological benefits of biological control programmes against these species have been poorly quantified. We investigated the process of biotic homogenization following invasion by Pistia stratiotes on aquatic biodiversity, and recovery provided by biological control of this weed. Biotic homogenization is the increased similarity of biota as a result of introductions of non-native species. The study quantified the effect of P. stratiotes, and its biological control through the introduction of the weevil, Neohydronomus affinis on recruitment of benthic macroinvertebrates to artificial substrates. Mats of P. stratiotes altered the community composition and reduced diversity of benthic macroinvertebrates in comparison to an uninvaded control. However, reduction in percentage cover of the weed through biological control resulted in a significant increase in dissolved oxygen, and recovery of the benthic macroinvertebrate community that was comparable to the uninvaded state. This highlights the process of homogenization by an invasive macrophyte, providing a justification for sustained ecological and restoration efforts in the biological control of P. stratiotes where this plant is problematic.
- Full Text:
- Date Issued: 2020
- Authors: Coetzee, Julie A , Langa, Susana D , Motitsoe, Samuel N , Hill, Martin P
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423967 , vital:72112 , xlink:href="https://doi.org/10.1007/s10750-020-04369-w"
- Description: Floating aquatic weed infestations have negative socio-economic and environmental consequences to the ecosystems they invade. Despite the long history of invasion by macrophytes, only a few studies focus on their impacts on biodiversity, while the ecological benefits of biological control programmes against these species have been poorly quantified. We investigated the process of biotic homogenization following invasion by Pistia stratiotes on aquatic biodiversity, and recovery provided by biological control of this weed. Biotic homogenization is the increased similarity of biota as a result of introductions of non-native species. The study quantified the effect of P. stratiotes, and its biological control through the introduction of the weevil, Neohydronomus affinis on recruitment of benthic macroinvertebrates to artificial substrates. Mats of P. stratiotes altered the community composition and reduced diversity of benthic macroinvertebrates in comparison to an uninvaded control. However, reduction in percentage cover of the weed through biological control resulted in a significant increase in dissolved oxygen, and recovery of the benthic macroinvertebrate community that was comparable to the uninvaded state. This highlights the process of homogenization by an invasive macrophyte, providing a justification for sustained ecological and restoration efforts in the biological control of P. stratiotes where this plant is problematic.
- Full Text:
- Date Issued: 2020
Invasive alien aquatic plants in South African freshwater ecosystems:
- Hill, Martin P, Coetzee, Julie A, Martin, Grant D, Smith, Rosali, Strange, Emily F
- Authors: Hill, Martin P , Coetzee, Julie A , Martin, Grant D , Smith, Rosali , Strange, Emily F
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176271 , vital:42680 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: South Africa has a long history of managing the establishment and spread of invasive fioating macrophytes. The past thirty years of research and the implementation of nation-wide biological and integrated control programmes has led to widespread control of these species in many degraded freshwater ecosystems. Such initiatives are aimed at restoring access to potable freshwater and maintaining native biodiversity.
- Full Text: false
- Date Issued: 2020
- Authors: Hill, Martin P , Coetzee, Julie A , Martin, Grant D , Smith, Rosali , Strange, Emily F
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176271 , vital:42680 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: South Africa has a long history of managing the establishment and spread of invasive fioating macrophytes. The past thirty years of research and the implementation of nation-wide biological and integrated control programmes has led to widespread control of these species in many degraded freshwater ecosystems. Such initiatives are aimed at restoring access to potable freshwater and maintaining native biodiversity.
- Full Text: false
- Date Issued: 2020
More than a century of biological control against invasive alien plants in South Africa: a synoptic view of what has been accomplished
- Hill, Martin P, Moran, V Clifford, Hoffmann, John H, Neser, Stefan, Zimmermann, Helmuth G, Simelane, David O, Klein, Hildegard, Zachariades, Costas, Wood, Alan R, Byrne, Marcus J, Paterson, Iain D, Martin, Grant D, Coetzee, Julie A
- Authors: Hill, Martin P , Moran, V Clifford , Hoffmann, John H , Neser, Stefan , Zimmermann, Helmuth G , Simelane, David O , Klein, Hildegard , Zachariades, Costas , Wood, Alan R , Byrne, Marcus J , Paterson, Iain D , Martin, Grant D , Coetzee, Julie A
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176260 , vital:42679 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Invasive alien plant species negatively affect agricultural production, degrade conservation areas, reduce water supplies, and increase the intensity of wild fires. Since 1913, biological control agents ie plant-feeding insects, mites, and fungal pathogens, have been deployed in South Africa to supplement other management practices (herbicides and mechanical controls) used against these invasive plant species. We do not describe the biological control agent species.
- Full Text: false
- Date Issued: 2020
- Authors: Hill, Martin P , Moran, V Clifford , Hoffmann, John H , Neser, Stefan , Zimmermann, Helmuth G , Simelane, David O , Klein, Hildegard , Zachariades, Costas , Wood, Alan R , Byrne, Marcus J , Paterson, Iain D , Martin, Grant D , Coetzee, Julie A
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176260 , vital:42679 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Invasive alien plant species negatively affect agricultural production, degrade conservation areas, reduce water supplies, and increase the intensity of wild fires. Since 1913, biological control agents ie plant-feeding insects, mites, and fungal pathogens, have been deployed in South Africa to supplement other management practices (herbicides and mechanical controls) used against these invasive plant species. We do not describe the biological control agent species.
- Full Text: false
- Date Issued: 2020
Prospects for the biological control of Iris pseudacorus L(Iridaceae)
- Minuti, Gianmarco, Coetzee, Julie A, Ngxande-Koza, Samella W, Hill, Martin P, Stiers, Iris
- Authors: Minuti, Gianmarco , Coetzee, Julie A , Ngxande-Koza, Samella W , Hill, Martin P , Stiers, Iris
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417776 , vital:71485 , xlink:href="https://doi.org/10.1080/09583157.2020.1853050"
- Description: Native to Europe, North Africa and western Asia, Iris pseudacorus L. (Iridaceae) has invaded natural and human-modified wetlands worldwide. This species is considered a noxious weed in several countries including Argentina, South Africa and New Zealand. Its broad ecological tolerance, high resilience and reproductive potential make current mechanical and chemical control measures cost-ineffective, and biological control is considered a suitable alternative. In order to prioritise candidate biocontrol agents, a list of organisms reported to attack the plant within its native range has been assembled, and information about their host-range and damaging potential gathered from the literature. Furthermore, surveys for natural enemies of the plant were conducted in Belgium and northern Italy. The insect fauna associated with I. pseudacorus at the sites surveyed comprised mostly incidental visitors and polyphagous feeders, with the exception of the sawfly Rhadinoceraea micans Klug (Hymenoptera: Tenthredinidae), the seed weevil Mononychus punctumalbum Herbst (Coleoptera: Curculionidae), and the flea beetle Aphthona nonstriata Goeze (Coleoptera: Chrysomelidae). The potential of these species for biocontrol was evaluated, and A. nonstriata was given highest priority. A population of this species was imported to quarantine in South Africa, where it is currently undergoing host-specificity testing. Importation of the two remaining candidates is expected shortly. In conclusion, the prospects for the biological control of I. pseudacorus appear promising.
- Full Text:
- Date Issued: 2020
- Authors: Minuti, Gianmarco , Coetzee, Julie A , Ngxande-Koza, Samella W , Hill, Martin P , Stiers, Iris
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417776 , vital:71485 , xlink:href="https://doi.org/10.1080/09583157.2020.1853050"
- Description: Native to Europe, North Africa and western Asia, Iris pseudacorus L. (Iridaceae) has invaded natural and human-modified wetlands worldwide. This species is considered a noxious weed in several countries including Argentina, South Africa and New Zealand. Its broad ecological tolerance, high resilience and reproductive potential make current mechanical and chemical control measures cost-ineffective, and biological control is considered a suitable alternative. In order to prioritise candidate biocontrol agents, a list of organisms reported to attack the plant within its native range has been assembled, and information about their host-range and damaging potential gathered from the literature. Furthermore, surveys for natural enemies of the plant were conducted in Belgium and northern Italy. The insect fauna associated with I. pseudacorus at the sites surveyed comprised mostly incidental visitors and polyphagous feeders, with the exception of the sawfly Rhadinoceraea micans Klug (Hymenoptera: Tenthredinidae), the seed weevil Mononychus punctumalbum Herbst (Coleoptera: Curculionidae), and the flea beetle Aphthona nonstriata Goeze (Coleoptera: Chrysomelidae). The potential of these species for biocontrol was evaluated, and A. nonstriata was given highest priority. A population of this species was imported to quarantine in South Africa, where it is currently undergoing host-specificity testing. Importation of the two remaining candidates is expected shortly. In conclusion, the prospects for the biological control of I. pseudacorus appear promising.
- Full Text:
- Date Issued: 2020
Chlorophyll fluorometry as a method of determining the effectiveness of a biological control agent in post-release evaluations
- Miller, Benjamin E, Coetzee, Julie A, Hill, Martin P
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417438 , vital:71453 , xlink:href="https://doi.org/10.1080/09583157.2019.1656165"
- Description: The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field.
- Full Text:
- Date Issued: 2019
- Authors: Miller, Benjamin E , Coetzee, Julie A , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417438 , vital:71453 , xlink:href="https://doi.org/10.1080/09583157.2019.1656165"
- Description: The impact of the planthopper Megamelus scutellaris, a biocontrol agent of water hyacinth in South Africa, was assessed using chlorophyll fluorometry in a greenhouse study under two different eutrophic nutrient treatments and agent densities (high and low). The results indicated that plants grown in low nutrients with high densities of M. scutellaris showed the greatest reduction in the fluorescence parameters Fv/Fm and PIabs. The successful use of chlorophyll fluorometry for the detection of subtle insect damage to water hyacinth leaves could have future application in post-release studies to measure the impact of M. scutellaris in the field.
- Full Text:
- Date Issued: 2019
Cryptic species of a water hyacinth biological control agent revealed in South Africa: host specificity, impact, and thermal tolerance
- Paterson, Iain D, Coetzee, Julie A, Weyl, Philip S R, Griffith, Tamzin C, Voogt, Nina, Hill, Martin P
- Authors: Paterson, Iain D , Coetzee, Julie A , Weyl, Philip S R , Griffith, Tamzin C , Voogt, Nina , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423982 , vital:72113 , xlink:href="https://doi.org/10.1111/eea.12812"
- Description: The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.
- Full Text:
- Date Issued: 2019
- Authors: Paterson, Iain D , Coetzee, Julie A , Weyl, Philip S R , Griffith, Tamzin C , Voogt, Nina , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423982 , vital:72113 , xlink:href="https://doi.org/10.1111/eea.12812"
- Description: The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.
- Full Text:
- Date Issued: 2019
Simulated global increases in atmospheric CO2 alter the tissue composition, but not the growth of some submerged aquatic plant bicarbonate users growing in DIC rich waters
- Hussner, Andreas, Smith, Rosali, Mettler-Altmann, Tabea, Hill, Martin P, Coetzee, Julie A
- Authors: Hussner, Andreas , Smith, Rosali , Mettler-Altmann, Tabea , Hill, Martin P , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419388 , vital:71640 , xlink:href="https://doi.org/10.1016/j.aquabot.2018.11.009"
- Description: Current global change scenarios predict an increase in atmospheric CO2 from the current 380 ppm to a value ranging from 540 ppm to 960 ppm by the year 2100. The effects of three air CO2 levels (400, 600 and 800 ppm) on five submerged aquatic plants that utilize HCO3− were studied, using the elevated CO2 Open Top Chamber facility at Rhodes University (Grahamstown, South Africa). Plants grew in water with two different initial dissolved inorganic carbon (DIC) concentrations of 1.5 and 3.0 mM. Overall, the growth rates and biomass allocation to roots were not affected by the initial DIC and air CO2, even though differences between the species were found. Furthermore, no overall effects were found on net photosynthesis, chlorophyll and starch content, even though significant effects of CO2 and DIC were observed in some species. In contrast, with increasing DIC and air CO2 a significant global decline in leaf nitrogen content linked with an increased C:N molar ratio was observed. The results indicate that submerged aquatic HCO3− users will be less affected by atmospheric CO2 increases when growing in DIC rich waters, in comparison to obligate CO2 users growing under CO2 limiting conditions as documented in previous studies. However, the changes found in plant nitrogen illustrate that atmospheric CO2 increases will affect nitrogen absorption by submerged plants, with subsequent ecosystem level effects.
- Full Text:
- Date Issued: 2019
- Authors: Hussner, Andreas , Smith, Rosali , Mettler-Altmann, Tabea , Hill, Martin P , Coetzee, Julie A
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419388 , vital:71640 , xlink:href="https://doi.org/10.1016/j.aquabot.2018.11.009"
- Description: Current global change scenarios predict an increase in atmospheric CO2 from the current 380 ppm to a value ranging from 540 ppm to 960 ppm by the year 2100. The effects of three air CO2 levels (400, 600 and 800 ppm) on five submerged aquatic plants that utilize HCO3− were studied, using the elevated CO2 Open Top Chamber facility at Rhodes University (Grahamstown, South Africa). Plants grew in water with two different initial dissolved inorganic carbon (DIC) concentrations of 1.5 and 3.0 mM. Overall, the growth rates and biomass allocation to roots were not affected by the initial DIC and air CO2, even though differences between the species were found. Furthermore, no overall effects were found on net photosynthesis, chlorophyll and starch content, even though significant effects of CO2 and DIC were observed in some species. In contrast, with increasing DIC and air CO2 a significant global decline in leaf nitrogen content linked with an increased C:N molar ratio was observed. The results indicate that submerged aquatic HCO3− users will be less affected by atmospheric CO2 increases when growing in DIC rich waters, in comparison to obligate CO2 users growing under CO2 limiting conditions as documented in previous studies. However, the changes found in plant nitrogen illustrate that atmospheric CO2 increases will affect nitrogen absorption by submerged plants, with subsequent ecosystem level effects.
- Full Text:
- Date Issued: 2019