Battle of the large carnivores: spatial partitioning in a small, enclosed reserve?
- Comley, Jessica, Joubert, Christoffel J, Mgqatsa, Nokubonga, Parker, Daniel M
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462581 , vital:76316 , xlink:href="https://hdl.handle.net/10520/EJC-2037326828"
- Description: Interspecific competition among terrestrial carnivores can have widespread impacts on community structure and can ultimately determine which species are able to coexist. Within the carnivore guild, coexistence can be achieved through either spatial, temporal or dietary partitioning. The most effective method of avoiding competition may be spatial partitioning, as it removes the potential for negative interactions. The ways in which large carnivore species utilize and partition space in small, enclosed reserves in South Africa is currently poorly understood. This knowledge gap weakens our understanding of which mechanisms structure large carnivore communities in these systems. Thus, our aim was to use Global Positioning System (GPS) collars to investigate the spatial dynamics of large carnivores [four lions (Panthera leo), three leopards (Panthera pardus) and three spotted hyaenas (Crocuta crocuta)] on a small, enclosed reserve (Selati Game Reserve). Regarding home ranges, lions had considerable overlap among themselves (especially the females), leopards had minimal overlap, while spotted hyaenas had no home range overlap. Although we found no evidence for spatial partitioning amongst the collared large carnivores, differences in the habitat use patterns of the three large carnivore species is evident. The high prey abundance of Selati, carnivore predation strategies, behavioural adaptations and ecological separation could be facilitating the coexistence of lions, spotted hyaenas and leopards in Selati. We encourage future research to be aimed at investigating the interactions of multiple sympatric carnivores in an attempt to bridge the knowledge gap on which mechanisms structure carnivore communities.
- Full Text:
- Date Issued: 2020
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462581 , vital:76316 , xlink:href="https://hdl.handle.net/10520/EJC-2037326828"
- Description: Interspecific competition among terrestrial carnivores can have widespread impacts on community structure and can ultimately determine which species are able to coexist. Within the carnivore guild, coexistence can be achieved through either spatial, temporal or dietary partitioning. The most effective method of avoiding competition may be spatial partitioning, as it removes the potential for negative interactions. The ways in which large carnivore species utilize and partition space in small, enclosed reserves in South Africa is currently poorly understood. This knowledge gap weakens our understanding of which mechanisms structure large carnivore communities in these systems. Thus, our aim was to use Global Positioning System (GPS) collars to investigate the spatial dynamics of large carnivores [four lions (Panthera leo), three leopards (Panthera pardus) and three spotted hyaenas (Crocuta crocuta)] on a small, enclosed reserve (Selati Game Reserve). Regarding home ranges, lions had considerable overlap among themselves (especially the females), leopards had minimal overlap, while spotted hyaenas had no home range overlap. Although we found no evidence for spatial partitioning amongst the collared large carnivores, differences in the habitat use patterns of the three large carnivore species is evident. The high prey abundance of Selati, carnivore predation strategies, behavioural adaptations and ecological separation could be facilitating the coexistence of lions, spotted hyaenas and leopards in Selati. We encourage future research to be aimed at investigating the interactions of multiple sympatric carnivores in an attempt to bridge the knowledge gap on which mechanisms structure carnivore communities.
- Full Text:
- Date Issued: 2020
Do spotted hyaenas outcompete the big cats in a small, enclosed system in South Africa?
- Comley, Jessica, Joubert, Christoffel J, Mgqatsa, Nokubonga, Parker, Daniel M
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462603 , vital:76318 , xlink:href="https://doi.org/10.1111/jzo.12772"
- Description: Carnivores are adapted to kill, meaning sympatric carnivores can have particularly aggressive and harmful competitive interactions. The co‐existence of multiple carnivores in an ecosystem could be restricted by their similarity in ecological niches (e.g. dietary overlap); however, high prey abundances could facilitate their co‐existence. Although the development of small, enclosed reserves (larger than 400 km2) in South Africa has reduced human–carnivore conflict, these systems may increase the likelihood of carnivore intra‐guild competition due to the clumping of competing carnivores into these restricted spaces. Using carnivore scat and kill site analyses, we determined the dietary preferences and overlap of sympatric large carnivores in a small, enclosed reserve, Selati Game Reserve (Selati). Large carnivores in Selati (lions (Panthera leo), spotted hyaenas (Crocuta crocuta) and leopards (Panthera pardus)) preferentially selected for varying combinations of prey size classes. Lions selected for large prey, leopards selected for small prey and spotted hyaenas did not prefer any particular prey size. Additionally, lions had the largest dietary breadth and the diet of leopards and spotted hyaenas overlapped considerably. Coupled with high prey densities in Selati, the predation strategies of the large carnivores could be facilitating their co‐existence. On the other hand, the high degree of dietary overlap among large carnivores suggests that there is strong potential for exploitation competition, particularly between spotted hyaenas and leopards as their diet overlapped extensively (91% and 93% for prey species and size class, respectively). Although spotted hyaenas are potentially outcompeting leopards in Selati, lions were the most dominant large carnivore. Our study reiterates the complexity of carnivore guild interactions and emphasizes how these interactions are subject to variation due to site‐specific circumstances (e.g. composition of prey and carnivore populations). We therefore encourage site‐specific, multi‐carnivore research throughout protected areas in southern Africa.
- Full Text:
- Date Issued: 2020
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462603 , vital:76318 , xlink:href="https://doi.org/10.1111/jzo.12772"
- Description: Carnivores are adapted to kill, meaning sympatric carnivores can have particularly aggressive and harmful competitive interactions. The co‐existence of multiple carnivores in an ecosystem could be restricted by their similarity in ecological niches (e.g. dietary overlap); however, high prey abundances could facilitate their co‐existence. Although the development of small, enclosed reserves (larger than 400 km2) in South Africa has reduced human–carnivore conflict, these systems may increase the likelihood of carnivore intra‐guild competition due to the clumping of competing carnivores into these restricted spaces. Using carnivore scat and kill site analyses, we determined the dietary preferences and overlap of sympatric large carnivores in a small, enclosed reserve, Selati Game Reserve (Selati). Large carnivores in Selati (lions (Panthera leo), spotted hyaenas (Crocuta crocuta) and leopards (Panthera pardus)) preferentially selected for varying combinations of prey size classes. Lions selected for large prey, leopards selected for small prey and spotted hyaenas did not prefer any particular prey size. Additionally, lions had the largest dietary breadth and the diet of leopards and spotted hyaenas overlapped considerably. Coupled with high prey densities in Selati, the predation strategies of the large carnivores could be facilitating their co‐existence. On the other hand, the high degree of dietary overlap among large carnivores suggests that there is strong potential for exploitation competition, particularly between spotted hyaenas and leopards as their diet overlapped extensively (91% and 93% for prey species and size class, respectively). Although spotted hyaenas are potentially outcompeting leopards in Selati, lions were the most dominant large carnivore. Our study reiterates the complexity of carnivore guild interactions and emphasizes how these interactions are subject to variation due to site‐specific circumstances (e.g. composition of prey and carnivore populations). We therefore encourage site‐specific, multi‐carnivore research throughout protected areas in southern Africa.
- Full Text:
- Date Issued: 2020
Lions do not change rivers: complex African savannas preclude top-down forcing by large carnivores
- Comley, Jessica, Joubert, Christoffel J, Mgqatsa, Nokubonga, Parker, Daniel M
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149215 , vital:38816 , https://doi.org/10.1016/j.jnc.2020.125844
- Description: Trophic cascade theories such as the ‘behaviourally-mediated trophic cascade hypothesis’ (BMTCH), have mainstreamed as ecological tools for conserving biodiversity and restoring ecosystems. The BMTCH relies on indirect negative effects of large carnivores through suppression of mesocarnivore activity and habitat use. Importantly, effects of top carnivores on mesocarnivores varies over time and space, is dependent on the species involved, and local context. In South Africa, there are very few free-ranging carnivores, as populations are often restricted to enclosed reserves. While predator-proof fences reduce human-wildlife conflict, they also influence space use within communities. We used an enclosed reserve with a relatively full complement of carnivores to test the generality of the BMTCH in the African context. Using single-species, multi-season occupancy models we investigated the spatial dynamics of multiple carnivores. We also investigated spatial partitioning by vegetation type and temporal partitioning.
- Full Text:
- Date Issued: 2020
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149215 , vital:38816 , https://doi.org/10.1016/j.jnc.2020.125844
- Description: Trophic cascade theories such as the ‘behaviourally-mediated trophic cascade hypothesis’ (BMTCH), have mainstreamed as ecological tools for conserving biodiversity and restoring ecosystems. The BMTCH relies on indirect negative effects of large carnivores through suppression of mesocarnivore activity and habitat use. Importantly, effects of top carnivores on mesocarnivores varies over time and space, is dependent on the species involved, and local context. In South Africa, there are very few free-ranging carnivores, as populations are often restricted to enclosed reserves. While predator-proof fences reduce human-wildlife conflict, they also influence space use within communities. We used an enclosed reserve with a relatively full complement of carnivores to test the generality of the BMTCH in the African context. Using single-species, multi-season occupancy models we investigated the spatial dynamics of multiple carnivores. We also investigated spatial partitioning by vegetation type and temporal partitioning.
- Full Text:
- Date Issued: 2020
Lions do not change rivers: complex African savannas preclude top-down forcing by large carnivores
- Comley, Jessica, Joubert, Christoffel J, Mgqatsa, Nokubonga, Parker, Daniel M
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462634 , vital:76321 , xlink:href="https://doi.org/10.1016/j.jnc.2020.125844"
- Description: Trophic cascade theories such as the ‘behaviourally-mediated trophic cascade hypothesis’ (BMTCH), have mainstreamed as ecological tools for conserving biodiversity and restoring ecosystems. The BMTCH relies on indirect negative effects of large carnivores through suppression of mesocarnivore activity and habitat use. Importantly, effects of top carnivores on mesocarnivores varies over time and space, is dependent on the species involved, and local context. In South Africa, there are very few free-ranging carnivores, as populations are often restricted to enclosed reserves. While predator-proof fences reduce human-wildlife conflict, they also influence space use within communities. We used an enclosed reserve with a relatively full complement of carnivores to test the generality of the BMTCH in the African context. Using single-species, multi-season occupancy models we investigated the spatial dynamics of multiple carnivores. We also investigated spatial partitioning by vegetation type and temporal partitioning. Our results revealed both support for and against the BMTCH. Lions and spotted hyaenas negatively influenced the detection probability of black-backed jackals and African wildcats, while leopards had a positive effect on these two mesocarnivore species. Additionally, lions positively influenced the detection probability of side-striped jackals. Although space use of carnivores in relation to vegetation type showed minimal evidence of spatial partitioning, each carnivore had a unique combination of abiotic and biotic factors influencing their spatial dynamics, which could facilitate co-existence. Temporal partitioning may also be promoting co-existence as activity patterns of smaller carnivores overlapped the least with sympatric carnivores, particularly lions. Extensive activity overlap between large carnivores does not promote co-existence. We suggest that applying the BMTCH as a universal law across ecosystems is unsupported and may lead to inappropriate conservation and management actions, and prevent protection of ecosystems.
- Full Text:
- Date Issued: 2020
- Authors: Comley, Jessica , Joubert, Christoffel J , Mgqatsa, Nokubonga , Parker, Daniel M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/462634 , vital:76321 , xlink:href="https://doi.org/10.1016/j.jnc.2020.125844"
- Description: Trophic cascade theories such as the ‘behaviourally-mediated trophic cascade hypothesis’ (BMTCH), have mainstreamed as ecological tools for conserving biodiversity and restoring ecosystems. The BMTCH relies on indirect negative effects of large carnivores through suppression of mesocarnivore activity and habitat use. Importantly, effects of top carnivores on mesocarnivores varies over time and space, is dependent on the species involved, and local context. In South Africa, there are very few free-ranging carnivores, as populations are often restricted to enclosed reserves. While predator-proof fences reduce human-wildlife conflict, they also influence space use within communities. We used an enclosed reserve with a relatively full complement of carnivores to test the generality of the BMTCH in the African context. Using single-species, multi-season occupancy models we investigated the spatial dynamics of multiple carnivores. We also investigated spatial partitioning by vegetation type and temporal partitioning. Our results revealed both support for and against the BMTCH. Lions and spotted hyaenas negatively influenced the detection probability of black-backed jackals and African wildcats, while leopards had a positive effect on these two mesocarnivore species. Additionally, lions positively influenced the detection probability of side-striped jackals. Although space use of carnivores in relation to vegetation type showed minimal evidence of spatial partitioning, each carnivore had a unique combination of abiotic and biotic factors influencing their spatial dynamics, which could facilitate co-existence. Temporal partitioning may also be promoting co-existence as activity patterns of smaller carnivores overlapped the least with sympatric carnivores, particularly lions. Extensive activity overlap between large carnivores does not promote co-existence. We suggest that applying the BMTCH as a universal law across ecosystems is unsupported and may lead to inappropriate conservation and management actions, and prevent protection of ecosystems.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »