Deposition of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shells around CdSeTe alloyed core quantum dots: effects on optical properties
- Adegoke, Oluwasesan, Nyokong, Tebello, Forbes, Patricia B C
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7289 , http://hdl.handle.net/10962/d1020342
- Description: In this work, we synthesized water-soluble L-cysteine-capped alloyed CdSeTe core quantum dots (QDs) and investigated the structural and optical properties of deposition of each of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shell layers. Photophysical results showed that the overcoating of a CdS shell around the alloyed CdSeTe core [quantum yield (QY) = 8.4%] resulted in effective confinement of the radiative exciton with an improved QY value of 93.5%. Subsequent deposition of a ZnSe shell around the CdSeTe/CdS surface decreased the QY value to 24.7%, but an increase in the QY value of up to 49.5% was observed when a ZnS shell was overcoated around the CdSeTe/CdS/ZnSe surface. QDs with shell layers showed improved stability relative to the core. Data obtained from time-resolved fluorescence measurements provided useful insight into variations in the photophysical properties of the QDs upon the formation of each shell layer. Our study suggests that the formation of CdSeTe/CdS core/shell QDs meets the requirements of quality QDs in terms of high photoluminescence QY and stability, hence further deposition of additional shells are not necessary in improving the optical properties of the core/shell QDs. Copyright © 2015 John Wiley & Sons, Ltd. , Original publication is available at http://dx.doi.org/10.1002/bio.3013
- Full Text: false
- Date Issued: 2015
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7289 , http://hdl.handle.net/10962/d1020342
- Description: In this work, we synthesized water-soluble L-cysteine-capped alloyed CdSeTe core quantum dots (QDs) and investigated the structural and optical properties of deposition of each of CdS, CdS/ZnSe and CdS/ZnSe/ZnS shell layers. Photophysical results showed that the overcoating of a CdS shell around the alloyed CdSeTe core [quantum yield (QY) = 8.4%] resulted in effective confinement of the radiative exciton with an improved QY value of 93.5%. Subsequent deposition of a ZnSe shell around the CdSeTe/CdS surface decreased the QY value to 24.7%, but an increase in the QY value of up to 49.5% was observed when a ZnS shell was overcoated around the CdSeTe/CdS/ZnSe surface. QDs with shell layers showed improved stability relative to the core. Data obtained from time-resolved fluorescence measurements provided useful insight into variations in the photophysical properties of the QDs upon the formation of each shell layer. Our study suggests that the formation of CdSeTe/CdS core/shell QDs meets the requirements of quality QDs in terms of high photoluminescence QY and stability, hence further deposition of additional shells are not necessary in improving the optical properties of the core/shell QDs. Copyright © 2015 John Wiley & Sons, Ltd. , Original publication is available at http://dx.doi.org/10.1002/bio.3013
- Full Text: false
- Date Issued: 2015
Optical properties of water-soluble L-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells
- Adegoke, Oluwasesan, Nyokong, Tebello, Forbes, Patricia B C
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193609 , vital:45352 , xlink:href="https://doi.org/10.1016/j.optmat.2015.05.024"
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing L-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed L-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.
- Full Text:
- Date Issued: 2015
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193609 , vital:45352 , xlink:href="https://doi.org/10.1016/j.optmat.2015.05.024"
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing L-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed L-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties.
- Full Text:
- Date Issued: 2015
Optical properties of water-soluble l-cysteine-capped alloyed CdSeS quantum dot passivated with ZnSeTe and ZnSeTe/ZnS shells
- Adegoke, Oluwasesan, Nyokong, Tebello, Forbes, Patricia B C
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7260 , http://hdl.handle.net/10962/d1020269
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing l-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed l-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties. , Original publication is available at http://dx.doi.org/10.1016/j.optmat.2015.05.024
- Full Text: false
- Date Issued: 2015
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7260 , http://hdl.handle.net/10962/d1020269
- Description: Alloyed quantum dots (QDs) passivated with shell materials have valuable optical characteristics suitable for a wide array of applications. In this work, alloyed ternary CdSeS QDs passivated with ZnSeTe and ZnSeTe/ZnS shells have been synthesized via a hot-injection method and a ligand exchange reaction employing l-cysteine as a thiol ligand has been used to obtain these water-soluble nanocrystals for the first time. The photoluminescence (PL) quantum yield (QY) of alloyed l-cysteine-capped CdSeS was 71.2% but decreased significantly to 5.2% upon passivation with a ZnSeTe shell. The red shift in PL emission of the CdSeS/ZnSeTe QDs was attributed to be strain-induced whilst a lattice-induced process likely created defect states in the core/shell interface hence contributing to the decline in the PL QY. Nonetheless, the fluorescence stability of CdSeS/ZnSeTe QDs in aqueous solution was unperturbed. Further passivation with a ZnS shell (CdSeS/ZnSeTe/ZnS) improved the PL QY to a value of 58.7% and thus indicates that the defect state in the QDs core/shell/shell structure was reduced. PL lifetime exciton measurements indicated that the rates of decay of the QDs influenced their photophysical properties. , Original publication is available at http://dx.doi.org/10.1016/j.optmat.2015.05.024
- Full Text: false
- Date Issued: 2015
Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots
- Adegoke, Oluwasesan, Nyokong, Tebello, Forbes, Patricia B C
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7244 , http://hdl.handle.net/10962/d1020248
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface. , Original publication is available at http://dx.doi.org/10.1016/j.jallcom.2015.05.083
- Full Text: false
- Date Issued: 2015
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Language: English
- Type: Article
- Identifier: vital:7244 , http://hdl.handle.net/10962/d1020248
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface. , Original publication is available at http://dx.doi.org/10.1016/j.jallcom.2015.05.083
- Full Text: false
- Date Issued: 2015
Structural and optical properties of alloyed quaternary CdSeTeS core and CdSeTeS/ZnS core–shell quantum dots
- Adegoke, Oluwasesan, Nyokong, Tebello, Forbes, Patricia B C
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193575 , vital:45349 , xlink:href="https://doi.org/10.1016/j.jallcom.2015.05.083"
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.
- Full Text:
- Date Issued: 2015
- Authors: Adegoke, Oluwasesan , Nyokong, Tebello , Forbes, Patricia B C
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/193575 , vital:45349 , xlink:href="https://doi.org/10.1016/j.jallcom.2015.05.083"
- Description: Synthesis of fluorescent alloyed quantum dots (QDs) with unique optical properties suitable for a wide array of chemical, physical and biological applications is of research interest. In this work, highly luminescent and photostable alloyed quaternary CdSeTeS core QDs of two different sizes were fabricated via the organometallic hot-injection synthetic route. Characterization of the nanocrystals were performed using TEM, XRD, UV/vis and fluorescence spectrophotometric techniques. We have demonstrated in this work that the well fabricated alloyed quaternary CdSeTeS core QDs possess unique optical properties that are advantageous over conventional core/shell systems. Formation of the CdSeTeS/ZnS core/shell with the desired optical properties comes with a number of challenges, hence the advantages of the quaternary alloyed core over the core/shell QDs are (i) avoidance of the challenging process of determining the proper shell thickness which can provide the desired optical properties in the core/shell system and (ii) avoidance of the lattice-induced mismatch between the core and the shell material which can either lead to incomplete exciton confinement or dislocation at the core/shell interface.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »