An interdisciplinary cruise dedicated to understanding ocean eddies upstream of the Prince Edward Islands
- Ansorge, Isabelle J, Froneman, P William, Lutjeharms, Johan R E, Bernard, Kim S, Lange, Louise, Lukáč, D, Backburg, B, Blake, Justin, Bland, S, Burls, N, Davies-Coleman, Michael T, Gerber, R, Gildenhuys, S, Hayes-Foley, P, Ludford, A, Manzoni, T, Robertson, E, Southey, D, Swart, S, Van Rensburg, D, Wynne, S
- Authors: Ansorge, Isabelle J , Froneman, P William , Lutjeharms, Johan R E , Bernard, Kim S , Lange, Louise , Lukáč, D , Backburg, B , Blake, Justin , Bland, S , Burls, N , Davies-Coleman, Michael T , Gerber, R , Gildenhuys, S , Hayes-Foley, P , Ludford, A , Manzoni, T , Robertson, E , Southey, D , Swart, S , Van Rensburg, D , Wynne, S
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6830 , http://hdl.handle.net/10962/d1007566
- Description: A detailed hydrographic and biological survey was carried out in the region of the South-West Indian Ridge during April 2004. Altimetry and hydrographic data have identified this region as an area of high flow variability. Hydrographic data revealed that here the Subantarctic Polar Front (SAF) and Antarctic Polar Front (APF) converge to form a highly intense frontal system. Water masses identified during the survey showed a distinct separation in properties between the northwestern and southeastern corners. In the north-west, water masses were distinctly Subantarctic (>8.5°C, salinity >34.2), suggesting that the SAF lay extremely far to the south. In the southeast corner water masses were typical of the Antarctic zone, showing a distinct subsurface temperature minimum of <2.5°C. Total integrated chl-a concentration during the survey ranged from 4.15 to 22.81 mg chl-a m[superscript (-2)], with the highest concentrations recorded at stations occupied in the frontal region. These data suggest that the region of the South-West Indian Ridge represents not only an area of elevated biological activity but also acts as a strong biogeographic barrier to the spatial distribution of zooplankton.
- Full Text:
- Date Issued: 2004
- Authors: Ansorge, Isabelle J , Froneman, P William , Lutjeharms, Johan R E , Bernard, Kim S , Lange, Louise , Lukáč, D , Backburg, B , Blake, Justin , Bland, S , Burls, N , Davies-Coleman, Michael T , Gerber, R , Gildenhuys, S , Hayes-Foley, P , Ludford, A , Manzoni, T , Robertson, E , Southey, D , Swart, S , Van Rensburg, D , Wynne, S
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6830 , http://hdl.handle.net/10962/d1007566
- Description: A detailed hydrographic and biological survey was carried out in the region of the South-West Indian Ridge during April 2004. Altimetry and hydrographic data have identified this region as an area of high flow variability. Hydrographic data revealed that here the Subantarctic Polar Front (SAF) and Antarctic Polar Front (APF) converge to form a highly intense frontal system. Water masses identified during the survey showed a distinct separation in properties between the northwestern and southeastern corners. In the north-west, water masses were distinctly Subantarctic (>8.5°C, salinity >34.2), suggesting that the SAF lay extremely far to the south. In the southeast corner water masses were typical of the Antarctic zone, showing a distinct subsurface temperature minimum of <2.5°C. Total integrated chl-a concentration during the survey ranged from 4.15 to 22.81 mg chl-a m[superscript (-2)], with the highest concentrations recorded at stations occupied in the frontal region. These data suggest that the region of the South-West Indian Ridge represents not only an area of elevated biological activity but also acts as a strong biogeographic barrier to the spatial distribution of zooplankton.
- Full Text:
- Date Issued: 2004
Studying the impact of ocean eddies on the ecosystem of the Prince Edward Islands: DEIMEC ll
- Pakhomov, Evgeny A, Ansorge, Isabelle J, Kaehler, Sven, Vumazonke, Lukhanyiso U, Gulekana, K, Bushula, T, Balt, C, Paul, D, Hargey, N, Stewart, H, Chang, N, Furno, L, Mkatshwa, S, Visser, C, Lutjeharms, Johan R E, Hayes-Foley, P
- Authors: Pakhomov, Evgeny A , Ansorge, Isabelle J , Kaehler, Sven , Vumazonke, Lukhanyiso U , Gulekana, K , Bushula, T , Balt, C , Paul, D , Hargey, N , Stewart, H , Chang, N , Furno, L , Mkatshwa, S , Visser, C , Lutjeharms, Johan R E , Hayes-Foley, P
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6932 , http://hdl.handle.net/10962/d1011952
- Description: The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity.
- Full Text:
- Date Issued: 2003
- Authors: Pakhomov, Evgeny A , Ansorge, Isabelle J , Kaehler, Sven , Vumazonke, Lukhanyiso U , Gulekana, K , Bushula, T , Balt, C , Paul, D , Hargey, N , Stewart, H , Chang, N , Furno, L , Mkatshwa, S , Visser, C , Lutjeharms, Johan R E , Hayes-Foley, P
- Date: 2003
- Language: English
- Type: Article
- Identifier: vital:6932 , http://hdl.handle.net/10962/d1011952
- Description: The Dynamics of Eddy Impacts on Marion’s Ecosystem Study (DEIMEC) programme was begun in 2002 with the aim of understanding the importance of the oceanic, upstream environment to the ecosystem of the Prince Edward Islands. This island group consists of two small volcanic islands and provides many opportunities for studying ecological and evolutionary processes, for monitoring ecological changes in relation to global climate change and for conserving a unique component of the planet’s biological diversity.
- Full Text:
- Date Issued: 2003
- «
- ‹
- 1
- ›
- »