Synthesis of a near infrared-actuated phthalocyanine-lipid vesicle system for augmented photodynamic therapy
- Nwahara, Namdi, Managa, Muthumuni, Stoffels, Mihlali, Britton, Jonathan, Prinsloo, Earl, Nyokong, Tebello
- Authors: Nwahara, Namdi , Managa, Muthumuni , Stoffels, Mihlali , Britton, Jonathan , Prinsloo, Earl , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185395 , vital:44383 , xlink:href="https://doi.org/10.1016/j.synthmet.2021.116811"
- Description: The efficacy of photodynamic therapy (PDT) is often limited by the poor bio-distributive properties of conventional photosensitizers and the local hypoxic microenvironment that characterises most solid tumours. Herein, a novel in situ oxygenic lipid formulation for photodynamic therapy (PDT) is reported. Such a hybrid was synthesized by adsorbing bimetallic nanozyme, MnO2@PtNPs (NPs = nanoparticles) onto graphene quantum dots (GQDs) – zinc (II) phthalocyanine conjugates, followed by liposomal encapsulation, affording it enhanced water solubility. The MnO2@PtNPs, which are is shown to possess excellent catalase-like properties surpassing that of MnO2 or PtNPs alone, serves to catalyze H2O2 to O2, while the zinc (II) phthalocyanine (1) serves to transform the formed oxygen to generate cytotoxic singlet oxygen immediately. We show that by combining each function of the respective building blocks, the as-synthesized 1-GQDs-MnO2@PtNPs-liposomes not only maintains the properties of oxygen supplementation through H2O2 catalysis but also displays cooperative properties for enhanced singlet oxygen production. Consequently, a remarkably improved PDT efficacy was observed for 1-GQDs-MnO2@PtNPs-liposomes in both normoxia and hypoxia. These results demonstrate the potential applicability of such nanozyme constituted 1-GQDs-MnO2@PtNPs-liposomes for achieving tumour treatment in hypoxic conditions by PDT.
- Full Text:
- Date Issued: 2021
- Authors: Nwahara, Namdi , Managa, Muthumuni , Stoffels, Mihlali , Britton, Jonathan , Prinsloo, Earl , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185395 , vital:44383 , xlink:href="https://doi.org/10.1016/j.synthmet.2021.116811"
- Description: The efficacy of photodynamic therapy (PDT) is often limited by the poor bio-distributive properties of conventional photosensitizers and the local hypoxic microenvironment that characterises most solid tumours. Herein, a novel in situ oxygenic lipid formulation for photodynamic therapy (PDT) is reported. Such a hybrid was synthesized by adsorbing bimetallic nanozyme, MnO2@PtNPs (NPs = nanoparticles) onto graphene quantum dots (GQDs) – zinc (II) phthalocyanine conjugates, followed by liposomal encapsulation, affording it enhanced water solubility. The MnO2@PtNPs, which are is shown to possess excellent catalase-like properties surpassing that of MnO2 or PtNPs alone, serves to catalyze H2O2 to O2, while the zinc (II) phthalocyanine (1) serves to transform the formed oxygen to generate cytotoxic singlet oxygen immediately. We show that by combining each function of the respective building blocks, the as-synthesized 1-GQDs-MnO2@PtNPs-liposomes not only maintains the properties of oxygen supplementation through H2O2 catalysis but also displays cooperative properties for enhanced singlet oxygen production. Consequently, a remarkably improved PDT efficacy was observed for 1-GQDs-MnO2@PtNPs-liposomes in both normoxia and hypoxia. These results demonstrate the potential applicability of such nanozyme constituted 1-GQDs-MnO2@PtNPs-liposomes for achieving tumour treatment in hypoxic conditions by PDT.
- Full Text:
- Date Issued: 2021
The modulation of the photophysical and photodynamic therapy activities of a phthalocyanine by detonation nanodiamonds: Comparison with graphene quantum dots and carbon nanodots
- Matshitse, Refilwe, Managa, Muthumuni, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Managa, Muthumuni , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186690 , vital:44525 , xlink:href="https://doi.org/10.1016/j.diamond.2019.107617"
- Description: A positively charged phthalocyanine (2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ)) was non-covalently linked to carbon based nanoparticles: detonation nanodiamonds (DNDs), carbon dots (CDs) and graphene quantum dots (GQDs) to form nanosembles of DNDs-ZnTPPcQ, GQDs-ZnTPPcQ and CDs-ZnTPPcQ, respectively. Irrespective of its small size and the least number of Pcs (41.67 μg loading per milligram of DNDs), DNDs-ZnTPPcQ gave the highest singlet oxygen quantum yield (0.62) in dimethyl sulfoxide compared to the rest of the conjugates. This resulted in superior PDT activity against MCF7 breast cancer lines, with the lowest cell viability of 28% compared to ZnTPPcQ-CDs and ZnTPPcQ-GQDs at 30.1 ± 0.02% and 31.4 ± 0.23%, respectively.
- Full Text:
- Date Issued: 2020
- Authors: Matshitse, Refilwe , Managa, Muthumuni , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186690 , vital:44525 , xlink:href="https://doi.org/10.1016/j.diamond.2019.107617"
- Description: A positively charged phthalocyanine (2,9,16,23-tetrakis[4-(N-methylpyridyloxy)]-phthalocyanine (ZnTPPcQ)) was non-covalently linked to carbon based nanoparticles: detonation nanodiamonds (DNDs), carbon dots (CDs) and graphene quantum dots (GQDs) to form nanosembles of DNDs-ZnTPPcQ, GQDs-ZnTPPcQ and CDs-ZnTPPcQ, respectively. Irrespective of its small size and the least number of Pcs (41.67 μg loading per milligram of DNDs), DNDs-ZnTPPcQ gave the highest singlet oxygen quantum yield (0.62) in dimethyl sulfoxide compared to the rest of the conjugates. This resulted in superior PDT activity against MCF7 breast cancer lines, with the lowest cell viability of 28% compared to ZnTPPcQ-CDs and ZnTPPcQ-GQDs at 30.1 ± 0.02% and 31.4 ± 0.23%, respectively.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »