Bioelectrocatalysis and surface analysis of gold coated with nickel oxide/hydroxide and glucose oxidase towards detection of glucose:
- Njoko, Nqobile, Louzada, Marcel, Britton, Jonathan, Khene, Samson M, Nyokong, Tebello, Mashazi, Philani N
- Authors: Njoko, Nqobile , Louzada, Marcel , Britton, Jonathan , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150071 , vital:38937 , https://doi.org/10.1016/j.colsurfb.2020.110981
- Description: The fabricating of metal oxide thin films onto conducting surfaces continues to grow and their potential applications as surfaces for biosensor applications is of paramount importance. The correct orientation of glucose oxidase redox enzymes yields very important biointerfaces capable of selectively detecting D-glucose as a measure of blood sugar for healthy and diabetic sick patients. The electrodeposition of redox enzymes, such as glucose oxidase enzymes, onto gold electrode surfaces pre-modified with nickel oxide was investigated in this work.
- Full Text:
- Date Issued: 2020
- Authors: Njoko, Nqobile , Louzada, Marcel , Britton, Jonathan , Khene, Samson M , Nyokong, Tebello , Mashazi, Philani N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/150071 , vital:38937 , https://doi.org/10.1016/j.colsurfb.2020.110981
- Description: The fabricating of metal oxide thin films onto conducting surfaces continues to grow and their potential applications as surfaces for biosensor applications is of paramount importance. The correct orientation of glucose oxidase redox enzymes yields very important biointerfaces capable of selectively detecting D-glucose as a measure of blood sugar for healthy and diabetic sick patients. The electrodeposition of redox enzymes, such as glucose oxidase enzymes, onto gold electrode surfaces pre-modified with nickel oxide was investigated in this work.
- Full Text:
- Date Issued: 2020
Covalent attachment of cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine onto pre-grafted gold electrode for the determination of catecholamine neurotransmitters:
- Tshenkeng, Keamogetse, Mashazi, Philani N
- Authors: Tshenkeng, Keamogetse , Mashazi, Philani N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163521 , vital:41045 , https://doi.org/10.1016/j.electacta.2020.137015
- Description: The fabrication of electroactive thin films onto gold electrode surfaces yields very interesting surfaces with excellent electrocatalytic activity. Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) was successfully synthesized and fully characterized using FT-IR spectroscopy, ultraviolet-visible (UV–Vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis, and mass spectrometry. The CoTCPhOPc was immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA, using amide coupling reaction to obtain Au-PEA-CoTCPhOPc.
- Full Text:
- Date Issued: 2020
- Authors: Tshenkeng, Keamogetse , Mashazi, Philani N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163521 , vital:41045 , https://doi.org/10.1016/j.electacta.2020.137015
- Description: The fabrication of electroactive thin films onto gold electrode surfaces yields very interesting surfaces with excellent electrocatalytic activity. Cobalt (II) tetra-(3-carboxyphenoxy) phthalocyanine (CoTCPhOPc) was successfully synthesized and fully characterized using FT-IR spectroscopy, ultraviolet-visible (UV–Vis) spectroscopy, magnetic circular dichroism (MCD) spectroscopy, elemental analysis, and mass spectrometry. The CoTCPhOPc was immobilized onto phenylethylamino (PEA) pre-grafted gold electrode surface, Au-PEA, using amide coupling reaction to obtain Au-PEA-CoTCPhOPc.
- Full Text:
- Date Issued: 2020
Fabrication of dye-sensitized solar cells based on push-pull asymmetrical substituted zinc and copper phthalocyanines and reduced graphene oxide nanosheet:
- Chindeka, Francis, Mashazi, Philani N, Britton, Jonathan, Oluwole, David O, Mapukata, Sivuyisiwe, Nyokong, Tebello
- Authors: Chindeka, Francis , Mashazi, Philani N , Britton, Jonathan , Oluwole, David O , Mapukata, Sivuyisiwe , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149076 , vital:38802 , https://doi.org/10.1016/j.jphotochem.2020.112612
- Description: Dye sensitized solar cells (DSSCs) were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69% and 4.36% respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) exhibit significant improvement on the performance of the DSSC compared to our previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
- Authors: Chindeka, Francis , Mashazi, Philani N , Britton, Jonathan , Oluwole, David O , Mapukata, Sivuyisiwe , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149076 , vital:38802 , https://doi.org/10.1016/j.jphotochem.2020.112612
- Description: Dye sensitized solar cells (DSSCs) were fabricated by using 2(3,5-biscarboxyphenoxy), 9(10), 16(17), 23(24)-tri(tertbutyl) phthalocyaninato Cu (4) and Zn (5) complexes as dyes on the ITO-TiO2 photoanodes containing reduced graphene oxide nanosheets (rGONS) or nitrogen-doped rGONS (NrGONS). The evaluation of the assembled DSSCs revealed that using ITO-TiO2-NrGONS-CuPc photoanode had the highest fill factor (FF) and power conversion efficiency (ɳ) of 69% and 4.36% respectively. These results show that the asymmetrical phthalocyanine complexes (4) and (5) exhibit significant improvement on the performance of the DSSC compared to our previous work on symmetrical carboxylated phthalocyanines with ɳ = 3.19%.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »