Quantifying ecosystem restoration recovery and restoration practice following the biological control of invasive alien macrophytes in Southern Africa
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
- Authors: Motitsoe, Samuel Nkopane
- Date: 2020
- Subjects: Salvinia molesta , Ceratophyllum demersum , Nymphaea mexicana , Invasive plants -- Biological control -- South Africa , Aquatic weeds -- Biological control -- South Africa , Restoration monitoring (Ecology) -- South Africa , Biolotical invasions -- Environmental aspects
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/167519 , vital:41488
- Description: Invasive alien aquatic plants (IAAP) species are known to have deleterious effects on the freshwater ecosystems they invade. This includes both socio-economic and ecologically important ecosystem goods and services. Thus, IAAP species are declared a serious threat, second only to habitat modification for causing a loss of aquatic biodiversity. Three control methods have been widely applied to control IAAP species invasion globally; mechanical, chemical and biological control. Both mechanical and chemical control methods are considered short-term and expensive, whereas biological control methods are regarded an effective and long-term solution for IAAP species control at the landscape level. But, little is known of the ecological recovery following the biological control of IAAP species, with mechanical control known to have had mixed success and chemical control to have non-targeted effects on aquatic ecosystems, causing harm to wildlife and human well-being. Biological control practitioners measure the success of biological control based on: (1) the biological control agents’ establishment and the negative impacts they impose on the targeted weed; and (2) the weeds biomass reduction and an increase in native macrophytes species. Arguably, measures of biological control success have been subjective and variable across the globe. Although some field studies have demonstrated biological control success to have positive socio-economic returns, there is little literature on ecological benefits. Furthermore, there is limited understanding on ecosystem recovery and possible restoration efforts following the biological control IAAP species, as compared to alien weeds in terrestrial and riparian ecosystems. Thus, this thesis aimed to quantify the ecological recovery i.e. aquatic biodiversity, ecosystem processes and trophic interactions following the management of Salvinia molesta in freshwater ecosystems. The research employed a suite of Before-After Control-Impact mesocosm and field studies to investigate the response of aquatic microalgae, macroinvertebrates and their interactions (food web structure and function) during S. molesta infestation and after mechanical and biological control. The mesocosm experiment (Before invasion, During invasion & After control) showed that both aquatic microalgae and macroinvertebrate diversity indices were reliable biological indicators of S. molesta ecological impacts and recovery following control. The restored treatment (100% S. molesta cover + biological control agents), demonstrated complete aquatic microalgae and macroinvertebrate recovery following biological control, similar to the control treatment (open water), where the degraded/impacted treatment (100% S. molesta cover with no biological control agents) showed a drastic decline in aquatic biodiversity and a complete shift in aquatic biota assemblage structure. Thus, the biological control effort by Cyrtobagous salviniae, the biological control agent for S. molesta, assisted in the recovery of aquatic biota following successful biological control. The field study (four field sites, two sites controlled mechanically and two biologically) investigated water quality, aquatic biodiversity and community trophic interactions (aquatic food web) “before and after” S. molesta control. The study showed a drastic decline in aquatic biodiversity (with three sites showing no record of aquatic macroinvertebrates, thus no biotic interactions during infestation) and poor water quality due to the shade-effect (light barrier due to floating S. molesta mats on the water surface) during the “before” S. molesta control phase. However, following both mechanical and biological control (“after” S. molesta control phase), there was a significant shift in abiotic and biotic ecosystem characteristics as compared to the “before” S. molesta control phase. Thus, rapid ecosystem recovery was apparent as a result of aquatic microalgae and macroinvertebrates recolonisation. Sites showed a normal functioning ecosystem where improved water quality, increased biodiversity, productivity and trophic interactions, was indicative of the return of biologically and functionally important species which were lost during the “before” S. molesta phase. Although the clear water state showed positive outcomes at Westlake River, these were short lived when the system was dominated by a cosmopolitan submerged Ceratophyllum demersum, and later replaced by a floating-leaved emergent IAAP Nymphaea mexicana. Each state was responsible for a significant shift in both biotic and abiotic characteristics, affirming macrophyte abilities to influence aquatic environments structure and functions. Furthermore, this event showed a clear example of a secondary invasion. Thus, a holistic IAAP species management strategy is necessary to restore previously invaded ecosystems and prevent subsequent secondary invasion and ecosystem degradation. In conclusion, the S. molesta shade-effect like any other free-floating IAAP species, was identified as the main degrading factor and responsible for water quality reduction, loss of aquatic diversity and shift in aquatic biota assemblage structure. Following S. molesta removal (or shade-effect elimination), there was a positive response to aquatic ecosystem species abundance, richness, diversity and community structure. Therefore, in combination, aquatic biota recolonisation rate and increases in biological and functional diversity were instrumental in the recovery of ecosystem structure and functions, following the control of S. molesta. Echoing existing literature, this thesis recommends: (1) IAAP species management programmes (mechanical and/or biological control) should not only aim to control the weed but also focus on ecosystems recovery and possible restoration goals; (2) biological control should be used where appropriate to combat free-floating IAAP species in freshwater ecosystems, followed by active introduction of native macrophyte propagules since they are limited by anthropogenic activities; and (3) more freshwater case studies are needed to add to our understanding of IAAP species management and restoration effort incorporating long-term monitoring.
- Full Text:
- Date Issued: 2020
Mapping Nitrogen Loading in Freshwater Systems: Using Aquatic Biota to Trace Nutrients
- Authors: Motitsoe, Samuel Nkopane
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5945 , http://hdl.handle.net/10962/d1020819
- Description: The majority of river systems in developing countries like South Africa, are found in catchments areas that are densely human populated, therefore are subjected to intense land-use and developmental pressures. Anthropogenic nutrient pollution or the excessive addition of nutrients is one important type of stressors that river systems often experience through intense land-use, which includes poor waste management and agricultural practices. Such events are referred to as the “urban syndrome”, were human populations and developmental demands outpace ecosystem services. Traditional measurements of water quality (e.g. physicochemical and micro-nutrient assessments) and biological monitoring (e.g. South African Scoring System 5, SASS5) techniques for assessing ecosystem health have being widely used to reflect the ecological health and status of river systems. However these techniques have a number of challenges associated with their application. SASS5 which is used most prevalently in southern Africa for example, can only be applied in lotic systems, it is habitat dependent and finally (but arguably most importantly) it cannot identify the source of pollution inputs. Recent laboratory studies using stable isotopic ratios (δ15N and δ13C) of aquatic macrophytes (duckweed: Spirodela sp.) have shown successful differentiation between different N-sources and the mapping of temporal and spatial nitrogen dynamics in freshwater systems. Furthermore δ15N isotopic values of Spirodela sp. showed the capability to act as an early warning indicator of eutrophication, before the onset of aquatic ecosystem degradation. Therefore, this study aimed to field test the potential of sewage plume mapping using the stable isotopic values of Spirodela sp. and aquatic macroinvertebrates at nine study sites on the Bloukrans-Kowie River and ten study sites on the Bushman-New Year’s River systems in the Eastern Cape, South Africa. And more...
- Full Text:
- Date Issued: 2016
- Authors: Motitsoe, Samuel Nkopane
- Date: 2016
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5945 , http://hdl.handle.net/10962/d1020819
- Description: The majority of river systems in developing countries like South Africa, are found in catchments areas that are densely human populated, therefore are subjected to intense land-use and developmental pressures. Anthropogenic nutrient pollution or the excessive addition of nutrients is one important type of stressors that river systems often experience through intense land-use, which includes poor waste management and agricultural practices. Such events are referred to as the “urban syndrome”, were human populations and developmental demands outpace ecosystem services. Traditional measurements of water quality (e.g. physicochemical and micro-nutrient assessments) and biological monitoring (e.g. South African Scoring System 5, SASS5) techniques for assessing ecosystem health have being widely used to reflect the ecological health and status of river systems. However these techniques have a number of challenges associated with their application. SASS5 which is used most prevalently in southern Africa for example, can only be applied in lotic systems, it is habitat dependent and finally (but arguably most importantly) it cannot identify the source of pollution inputs. Recent laboratory studies using stable isotopic ratios (δ15N and δ13C) of aquatic macrophytes (duckweed: Spirodela sp.) have shown successful differentiation between different N-sources and the mapping of temporal and spatial nitrogen dynamics in freshwater systems. Furthermore δ15N isotopic values of Spirodela sp. showed the capability to act as an early warning indicator of eutrophication, before the onset of aquatic ecosystem degradation. Therefore, this study aimed to field test the potential of sewage plume mapping using the stable isotopic values of Spirodela sp. and aquatic macroinvertebrates at nine study sites on the Bloukrans-Kowie River and ten study sites on the Bushman-New Year’s River systems in the Eastern Cape, South Africa. And more...
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »