Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity
- Nene, Lindokuhle Cindy, Magadla, Aviwe, Nyokong, Tebello
- Authors: Nene, Lindokuhle Cindy , Magadla, Aviwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295766 , vital:57376 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2022.112553"
- Description: This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
- Full Text:
- Date Issued: 2022
- Authors: Nene, Lindokuhle Cindy , Magadla, Aviwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295766 , vital:57376 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2022.112553"
- Description: This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
- Full Text:
- Date Issued: 2022
Enhanced Solar Efficiency via Incorporation of Plasmonic Gold Nanostructures in a Titanium Oxide/Eosin Y Dye-Sensitized Solar Cell
- Nyembe, Sanele, Chindeka, Francis, Ndlovu, Gebhu, Mkhohlakali, Andile, Nyokong, Tebello, Sikhwiyhilu, Lucy
- Authors: Nyembe, Sanele , Chindeka, Francis , Ndlovu, Gebhu , Mkhohlakali, Andile , Nyokong, Tebello , Sikhwiyhilu, Lucy
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295783 , vital:57377 , xlink:href="https://doi.org/10.3390/nano12101715"
- Description: Plasmonic gold nanoparticles significantly improved the efficiency of a TiO2 and Eosin Y based dye-sensitized solar cell from 2.4 to 6.43%. The gold nanoparticles’ sizes that were tested were 14 nm, 30 nm and 40 nm synthesized via the systematic reduction of citrate concentration using the Turkevich method. Prestine TiO2 without plasmonic gold nanoparticles yielded an efficiency of 2.4%. However, the loading of 40 nm gold nanoparticles into the TiO2 matrix yielded the highest DSSC efficiency of 6.43% compared to 30 nm (5.91%) and 14 nm (2.6%). The relatively high efficiency demonstrated by plasmonic gold nanoparticles is ascribed to light absorption/scattering, hot electron injection and plasmon-induced resonance energy transfer (PIRET), influenced by the size of the gold nanoparticles.
- Full Text:
- Date Issued: 2022
- Authors: Nyembe, Sanele , Chindeka, Francis , Ndlovu, Gebhu , Mkhohlakali, Andile , Nyokong, Tebello , Sikhwiyhilu, Lucy
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295783 , vital:57377 , xlink:href="https://doi.org/10.3390/nano12101715"
- Description: Plasmonic gold nanoparticles significantly improved the efficiency of a TiO2 and Eosin Y based dye-sensitized solar cell from 2.4 to 6.43%. The gold nanoparticles’ sizes that were tested were 14 nm, 30 nm and 40 nm synthesized via the systematic reduction of citrate concentration using the Turkevich method. Prestine TiO2 without plasmonic gold nanoparticles yielded an efficiency of 2.4%. However, the loading of 40 nm gold nanoparticles into the TiO2 matrix yielded the highest DSSC efficiency of 6.43% compared to 30 nm (5.91%) and 14 nm (2.6%). The relatively high efficiency demonstrated by plasmonic gold nanoparticles is ascribed to light absorption/scattering, hot electron injection and plasmon-induced resonance energy transfer (PIRET), influenced by the size of the gold nanoparticles.
- Full Text:
- Date Issued: 2022
Fabrication of asymmetrical morpholine phthalocyanines conjugated chitosan-polyacrylonitrile nanofibers for improved photodynamic antimicrobial chemotherapy activity
- Sindelo, Azole, Mafukidze, Donovan M, Nyokong, Tebello
- Authors: Sindelo, Azole , Mafukidze, Donovan M , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229873 , vital:49719 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102760"
- Description: The work is based on the synthesis and photodynamic antimicrobial chemotherapy (PACT) activities of neutral (1 and 2) and cationic (1Q and 2Q) morpholine substituted phthalocyanines. For applicability, these complexes were covalently linked to modified polyacrylonitrile (PAN) to form 1-PAN, 2-PAN, 1Q-PAN, and 2Q-PAN, respectively. Chitosan was conjugated to PAN (to form PAN-CS) which was then linked to the Pcs to form PAN-CS-1, PAN-CS-2, PAN-CS-1Q, and PAN-CS-2Q, respectively. Singlet oxygen quantum yields improved following the inclusion of chitosan. The PACT activities of the complexes alone and when anchored to both PAN and PAN-CS was evaluated against bacteria: S. aureus, E. coli and fungi C. albicans. Cationic phthalocyanine showed high efficacy values of >7 log reduction value for all microorganisms. These results translated into excellent bacterial colony reduction of >90% against both S. aureus and C. albicans after 1 h of photoirradiation on PAN-CS support.
- Full Text:
- Date Issued: 2022
- Authors: Sindelo, Azole , Mafukidze, Donovan M , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229873 , vital:49719 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102760"
- Description: The work is based on the synthesis and photodynamic antimicrobial chemotherapy (PACT) activities of neutral (1 and 2) and cationic (1Q and 2Q) morpholine substituted phthalocyanines. For applicability, these complexes were covalently linked to modified polyacrylonitrile (PAN) to form 1-PAN, 2-PAN, 1Q-PAN, and 2Q-PAN, respectively. Chitosan was conjugated to PAN (to form PAN-CS) which was then linked to the Pcs to form PAN-CS-1, PAN-CS-2, PAN-CS-1Q, and PAN-CS-2Q, respectively. Singlet oxygen quantum yields improved following the inclusion of chitosan. The PACT activities of the complexes alone and when anchored to both PAN and PAN-CS was evaluated against bacteria: S. aureus, E. coli and fungi C. albicans. Cationic phthalocyanine showed high efficacy values of >7 log reduction value for all microorganisms. These results translated into excellent bacterial colony reduction of >90% against both S. aureus and C. albicans after 1 h of photoirradiation on PAN-CS support.
- Full Text:
- Date Issued: 2022
Ga III triarylcorroles with push–pull substitutions
- Niu, Yingjie, Wang, Lin, Guo, Yingxin, Zhu, Weihua, Soy, Rodah C, Babu, Balaji, Mack, John, Nyokong, Tebello, Xu, Haijun, Liang, Xu
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes
- Centane, Sixolile, Nyokong, Tebello
- Authors: Centane, Sixolile , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230960 , vital:49836 , xlink:href="https://doi.org/10.1016/j.sbsr.2021.100467"
- Description: A method is presented for the electrochemical detection of the breast cancer biomarker human epidermal growth factor receptor 2 (HER2). A glassy carbon electrode was modified using two techniques known as sequential adsorption and electro-polymerization, and the results are compared. The highly conductive polypyrrole (PPy) is used, in the presence of sulfur/nitrogen doped graphene quantum dots (SNGQDs) and a known cobalt phthalocyanine (CoPc). The different nanomaterials were used as an immobilization platform for the HER2 specific HB5 aptamer via amide linkage. The nanomaterials were arranged in various ways on the glassy carbon electrode, to investigate the effect of the electrode interface on the operational characteristics of a biosensor. The immobilized aptamer selectively recognizes HER2 on the electrode interface, and this leads to an increased charge transfer resistance (Rct) of the electrode when using ferricyanide as the electrochemical probe. The developed immunosensors showed high sensitivity with the best detection limit of 0.00141 ng/mL. The results showed that the method is simple and sensitive enough for the determination of HER2 in serum samples with good reproducibility and accuracy.
- Full Text:
- Date Issued: 2022
- Authors: Centane, Sixolile , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230960 , vital:49836 , xlink:href="https://doi.org/10.1016/j.sbsr.2021.100467"
- Description: A method is presented for the electrochemical detection of the breast cancer biomarker human epidermal growth factor receptor 2 (HER2). A glassy carbon electrode was modified using two techniques known as sequential adsorption and electro-polymerization, and the results are compared. The highly conductive polypyrrole (PPy) is used, in the presence of sulfur/nitrogen doped graphene quantum dots (SNGQDs) and a known cobalt phthalocyanine (CoPc). The different nanomaterials were used as an immobilization platform for the HER2 specific HB5 aptamer via amide linkage. The nanomaterials were arranged in various ways on the glassy carbon electrode, to investigate the effect of the electrode interface on the operational characteristics of a biosensor. The immobilized aptamer selectively recognizes HER2 on the electrode interface, and this leads to an increased charge transfer resistance (Rct) of the electrode when using ferricyanide as the electrochemical probe. The developed immunosensors showed high sensitivity with the best detection limit of 0.00141 ng/mL. The results showed that the method is simple and sensitive enough for the determination of HER2 in serum samples with good reproducibility and accuracy.
- Full Text:
- Date Issued: 2022
In vitro photoinactivation of S. aureus and photocatalytic degradation of tetracycline by novel phthalocyanine-graphene quantum dots nano-assemblies
- Openda, Yolande Ikala, Mgidlana, Sithi, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Mgidlana, Sithi , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229895 , vital:49721 , xlink:href="https://doi.org/10.1016/j.jlumin.2022.118863"
- Description: A novel asymmetrical zinc (II) phthalocyanine (Pc) 4 bearing three dimethoxy groups and one carboxyl group was linked to glutathione capped graphene quantum dots (GQDs) by the reaction of carboxylic acid substituent on Pc 4 with the amino group on the GQDs. On the other side, the symmetrical Pc analog 3 was linked to the same nanoparticles through π-π interactions. The as-formed nano-photosensitizers were fully characterized by spectroscopic methods and their photophysicochemical properties were investigated as well. Photodynamic antimicrobial chemotherapy was performed on the planktonic cells of S. aureus strain. And the results show that these nano assemblies were able to completely inhibit the metabolic activity of the resistant bacteria strain S. aureus with a 10.26 log reduction in the viable count. Again, asymmetrical Pc showed higher photocatalytic activity compared to the symmetrical complex with higher kobs and fast initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model. The target conjugates showed all the advantages of two different groups existing on a single entity.
- Full Text:
- Date Issued: 2022
- Authors: Openda, Yolande Ikala , Mgidlana, Sithi , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229895 , vital:49721 , xlink:href="https://doi.org/10.1016/j.jlumin.2022.118863"
- Description: A novel asymmetrical zinc (II) phthalocyanine (Pc) 4 bearing three dimethoxy groups and one carboxyl group was linked to glutathione capped graphene quantum dots (GQDs) by the reaction of carboxylic acid substituent on Pc 4 with the amino group on the GQDs. On the other side, the symmetrical Pc analog 3 was linked to the same nanoparticles through π-π interactions. The as-formed nano-photosensitizers were fully characterized by spectroscopic methods and their photophysicochemical properties were investigated as well. Photodynamic antimicrobial chemotherapy was performed on the planktonic cells of S. aureus strain. And the results show that these nano assemblies were able to completely inhibit the metabolic activity of the resistant bacteria strain S. aureus with a 10.26 log reduction in the viable count. Again, asymmetrical Pc showed higher photocatalytic activity compared to the symmetrical complex with higher kobs and fast initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model. The target conjugates showed all the advantages of two different groups existing on a single entity.
- Full Text:
- Date Issued: 2022
Indium phthalocyanines
- Pinar, Sen, Mack, John, Nyokong, Tebello
- Authors: Pinar, Sen , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229998 , vital:49731 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.131850"
- Description: In this study, the photodynamic antimicrobial activities of a series of new tetra-substituted indium phthalocyanine (InPc) complexes are assessed. An aldehyde substituted complex (2) was initially prepared, which was converted through a condensatioreaction to an imine-pyrrolidine substituted complex (3), which in turn was quaternized to form a tetracationic species (4). Favorable photophysicochemical properties were obtained by incorporating a heavy In(III) ion into the central cavity. Aggregation studies revealed that 2–4 remain non-aggregated in DMSO at concentration below 25 µM. The photodeactivation of S.aureus and E.coli was studied. Log reduction values > 9.0 were obtained for cationic InPc 4 after 30 min of incubation and exposure to light for 75 min.
- Full Text:
- Date Issued: 2022
- Authors: Pinar, Sen , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229998 , vital:49731 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.131850"
- Description: In this study, the photodynamic antimicrobial activities of a series of new tetra-substituted indium phthalocyanine (InPc) complexes are assessed. An aldehyde substituted complex (2) was initially prepared, which was converted through a condensatioreaction to an imine-pyrrolidine substituted complex (3), which in turn was quaternized to form a tetracationic species (4). Favorable photophysicochemical properties were obtained by incorporating a heavy In(III) ion into the central cavity. Aggregation studies revealed that 2–4 remain non-aggregated in DMSO at concentration below 25 µM. The photodeactivation of S.aureus and E.coli was studied. Log reduction values > 9.0 were obtained for cationic InPc 4 after 30 min of incubation and exposure to light for 75 min.
- Full Text:
- Date Issued: 2022
Integrated photocatalyst adsorbents based on porphyrin anchored to activated carbon granules for water treatment
- Oyim, James, Amuhaya, Edith K, Matshitse, Refilwe, Mack, John, Nyokong, Tebello
- Authors: Oyim, James , Amuhaya, Edith K , Matshitse, Refilwe , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300101 , vital:57893 , xlink:href="https://doi.org/10.1016/j.cartre.2022.100191"
- Description: Integration of adsorption and photocatalysis processes can lead to several benefits in water treatment. Integrating well-known adsorbents with photocatalysts ensures that all the interesting components are preserved and helps to overcome the serious downsides of each material and technique when operated independently. In this work, we introduce a new concept of combining both absorption and photodegradation mechanisms using organic photocatalytic adsorbents for water purification. This was achieved by formulating photosensitizing hybrids based on a newly synthesized chloroindium (III) 5,10,15,20-tetrakis(4-acetamidophenyl) porphyrin (InTAAP) compound, anchored on oxygen functionalized coconut shell-based activated carbon granules supports. The fashioned integrated photocatalyst adsorbent hybrid (InTAAP(ACO)) was then studied for their adsorption and photodegradation efficiency using methylene blue dye, where InTAAP(ACO) showed excellent photocatalytic activity compared to ACO and unfunctionalized activated carbon granules (AC), with appreciably high and adsorption properties as AC and ACO.
- Full Text:
- Date Issued: 2022
- Authors: Oyim, James , Amuhaya, Edith K , Matshitse, Refilwe , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300101 , vital:57893 , xlink:href="https://doi.org/10.1016/j.cartre.2022.100191"
- Description: Integration of adsorption and photocatalysis processes can lead to several benefits in water treatment. Integrating well-known adsorbents with photocatalysts ensures that all the interesting components are preserved and helps to overcome the serious downsides of each material and technique when operated independently. In this work, we introduce a new concept of combining both absorption and photodegradation mechanisms using organic photocatalytic adsorbents for water purification. This was achieved by formulating photosensitizing hybrids based on a newly synthesized chloroindium (III) 5,10,15,20-tetrakis(4-acetamidophenyl) porphyrin (InTAAP) compound, anchored on oxygen functionalized coconut shell-based activated carbon granules supports. The fashioned integrated photocatalyst adsorbent hybrid (InTAAP(ACO)) was then studied for their adsorption and photodegradation efficiency using methylene blue dye, where InTAAP(ACO) showed excellent photocatalytic activity compared to ACO and unfunctionalized activated carbon granules (AC), with appreciably high and adsorption properties as AC and ACO.
- Full Text:
- Date Issued: 2022
Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties
- Sen, Pinar, Soy, Rodah, Mgidlana, Sithi, Mack, John, Nyokong, Tebello
- Authors: Sen, Pinar , Soy, Rodah , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
- Authors: Sen, Pinar , Soy, Rodah , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
Low-Symmetry Phthalocyanines Bearing Carboxy-Groups
- Bunin, Dmitry A, Ndebele, Nobuhle, Martynov, Alexander G, Mack, John, Gorbunova, Yulia G, Nyokong, Tebello
- Authors: Bunin, Dmitry A , Ndebele, Nobuhle , Martynov, Alexander G , Mack, John , Gorbunova, Yulia G , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231262 , vital:49870 , xlink:href="https://doi.org/10.3390/molecules27020524" "
- Description: The synthesis and characterization of A3B-type phthalocyanines, ZnPc1–4, bearing bulky 2,6-diisopropylphenoxy-groups or chlorine atoms on isoindoline units “A” and either one or two carboxylic anchors on isoindoline unit “B” are reported. A comparison of molecular modelling with the conventional time dependent—density functional theory (TD-DFT) approach and its simplified sTD-DFT approximation provides further evidence that the latter method accurately reproduces the key trends in the spectral properties, providing colossal savings in computer time for quite large molecules. This demonstrates that it is a valuable tool for guiding the rational design of new phthalocyanines for practical applications.
- Full Text:
- Date Issued: 2022
- Authors: Bunin, Dmitry A , Ndebele, Nobuhle , Martynov, Alexander G , Mack, John , Gorbunova, Yulia G , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231262 , vital:49870 , xlink:href="https://doi.org/10.3390/molecules27020524" "
- Description: The synthesis and characterization of A3B-type phthalocyanines, ZnPc1–4, bearing bulky 2,6-diisopropylphenoxy-groups or chlorine atoms on isoindoline units “A” and either one or two carboxylic anchors on isoindoline unit “B” are reported. A comparison of molecular modelling with the conventional time dependent—density functional theory (TD-DFT) approach and its simplified sTD-DFT approximation provides further evidence that the latter method accurately reproduces the key trends in the spectral properties, providing colossal savings in computer time for quite large molecules. This demonstrates that it is a valuable tool for guiding the rational design of new phthalocyanines for practical applications.
- Full Text:
- Date Issued: 2022
Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer
- Openda, Yolande Ikala, Babu, Balaji, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
Photodegradation of ibuprofen using 5-10-15-20-tetrakis (4-bromophenyl) porphyrin conjugated to graphene quantum dots
- Magaela, N Bridged, Ndlovu, Knowledge S, Tshangana, Charmaine S, Muleia, Adoph A, Mamba, Bhekie B, Nyokong, Tebello, Managa, Muthumuni
- Authors: Magaela, N Bridged , Ndlovu, Knowledge S , Tshangana, Charmaine S , Muleia, Adoph A , Mamba, Bhekie B , Nyokong, Tebello , Managa, Muthumuni
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304819 , vital:58493 , xlink:href="https://doi.org/10.1016/j.optmat.2022.113147"
- Description: Ibuprofen (IBU) is a common anti-inflammatory drug that is consumed by many individuals in the world. As such, analytical studies have detected high concentrations of the drug in many waterbodies, which poses a risk of harmful effects on the environment and public health. The hydroxyl radical technologies, a collective of techniques also known as advanced oxidation processes (AOPs), can be utilized to degrade this emerging pollutant. In this study, the photodegradation of ibuprofen using 5,10,15,20-tetrakis(4-bromophenyl) porphyrin conjugated to graphene quantum dots was investigated using a custom-built photoreactor. Three different concentrations of IBU (200, 300 and 500 μM) were utilized as initial concentrations. The pH of the IBU was varied between acidic (pH 3.0), natural (pH 5.0) and alkaline (pH 9.0) to note the effect on IBU degradation as a function of time. The Highest ФΔ was obtained for InTBrP- GDQs (ФΔ = 0.80), followed by InTBrP (ФΔ = 0.74). The photodegradation efficiency of the TBrP-GQDs and InTBrP-GQDs were determined to be 43.2 and 76.1% respectively.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Ndlovu, Knowledge S , Tshangana, Charmaine S , Muleia, Adoph A , Mamba, Bhekie B , Nyokong, Tebello , Managa, Muthumuni
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304819 , vital:58493 , xlink:href="https://doi.org/10.1016/j.optmat.2022.113147"
- Description: Ibuprofen (IBU) is a common anti-inflammatory drug that is consumed by many individuals in the world. As such, analytical studies have detected high concentrations of the drug in many waterbodies, which poses a risk of harmful effects on the environment and public health. The hydroxyl radical technologies, a collective of techniques also known as advanced oxidation processes (AOPs), can be utilized to degrade this emerging pollutant. In this study, the photodegradation of ibuprofen using 5,10,15,20-tetrakis(4-bromophenyl) porphyrin conjugated to graphene quantum dots was investigated using a custom-built photoreactor. Three different concentrations of IBU (200, 300 and 500 μM) were utilized as initial concentrations. The pH of the IBU was varied between acidic (pH 3.0), natural (pH 5.0) and alkaline (pH 9.0) to note the effect on IBU degradation as a function of time. The Highest ФΔ was obtained for InTBrP- GDQs (ФΔ = 0.80), followed by InTBrP (ФΔ = 0.74). The photodegradation efficiency of the TBrP-GQDs and InTBrP-GQDs were determined to be 43.2 and 76.1% respectively.
- Full Text:
- Date Issued: 2022
Photodegradation of tetracycline by asymmetrical zinc (II) phthalocyanines conjugated to cobalt tungstate nanoparticles
- Mgidlana, Sithi, Sen, Pinar, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300233 , vital:57908 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.132938"
- Description: This work focused on syntheses of novel asymmetrically tetra substituted Zn phthalocyanines (ZnPc) each containing a single carboxyl group, with the other substituents bearing alkynyl (complex 1) and fluorine containing groups (complexes 2 and 3). The complexes were conjugated to cobalt tungstate nanoparticles and employed as efficient photocatalysts for degradation of tetracycline in water. ZnPc complexes and their conjugates showed good photophysical and photochemical properties behaviour with complex 1 giving higher triplet and singlet oxygen quantum yields compared to 2 and 3. Complex 1 showed higher activity towards the photodegradation of tetracycline compared to complexes 2 and 3, with higher kobs and initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model.
- Full Text:
- Date Issued: 2022
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300233 , vital:57908 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.132938"
- Description: This work focused on syntheses of novel asymmetrically tetra substituted Zn phthalocyanines (ZnPc) each containing a single carboxyl group, with the other substituents bearing alkynyl (complex 1) and fluorine containing groups (complexes 2 and 3). The complexes were conjugated to cobalt tungstate nanoparticles and employed as efficient photocatalysts for degradation of tetracycline in water. ZnPc complexes and their conjugates showed good photophysical and photochemical properties behaviour with complex 1 giving higher triplet and singlet oxygen quantum yields compared to 2 and 3. Complex 1 showed higher activity towards the photodegradation of tetracycline compared to complexes 2 and 3, with higher kobs and initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model.
- Full Text:
- Date Issued: 2022
Photodynamic activity of novel cationic porphyrins conjugated to graphene quantum dots against Staphylococcus aureus
- Magaela, N Bridged, Makola, Lekgowa C, Managa, Muthumuni, Nyokong, Tebello
- Authors: Magaela, N Bridged , Makola, Lekgowa C , Managa, Muthumuni , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295797 , vital:57379 , xlink:href="https://doi.org/10.1142/S1088424622500316"
- Description: Novel 5-(pyridyl)-10-15-20-tris(4-bromophenyl) porphyrin (complex 1), indium metal derivative (complex 2), and quaternized derivative (complex 3) were synthesized and conjugated to graphene quantum dots (GQDs). The conjugation of the porphyrins to GQDs was through ππ-ππ stacking. Herein, the ππ-ππ stacking approach was used to avoid covalent conjugation which might compromise the intrinsic chemical and physical properties. The photodynamic activities of the proposed nanomaterials were assessed towards Staphylococcus aureus cell obliteration. The photophysical properties of the prepared complexes were also studied prior to the application. Moreover, a decrease in fluorescence lifetimes was observed upon metalation of complex 1. As anticipated, singlet oxygen quantum yield (ΦΔ)ΦΔ) increased notably upon heavy metal (indium) insertion and upon composite formation. Antimicrobial photodynamic therapy comparative studies were done on quaternized and unquaternized indium porphyrins conjugated to GQDs. Complex 3-GQDs exhibited the highest antibacterial activities compared to other complexes, and this was attributed to the high ΦΔΦΔ which plays an imperative role in photodynamic therapy applications.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Makola, Lekgowa C , Managa, Muthumuni , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295797 , vital:57379 , xlink:href="https://doi.org/10.1142/S1088424622500316"
- Description: Novel 5-(pyridyl)-10-15-20-tris(4-bromophenyl) porphyrin (complex 1), indium metal derivative (complex 2), and quaternized derivative (complex 3) were synthesized and conjugated to graphene quantum dots (GQDs). The conjugation of the porphyrins to GQDs was through ππ-ππ stacking. Herein, the ππ-ππ stacking approach was used to avoid covalent conjugation which might compromise the intrinsic chemical and physical properties. The photodynamic activities of the proposed nanomaterials were assessed towards Staphylococcus aureus cell obliteration. The photophysical properties of the prepared complexes were also studied prior to the application. Moreover, a decrease in fluorescence lifetimes was observed upon metalation of complex 1. As anticipated, singlet oxygen quantum yield (ΦΔ)ΦΔ) increased notably upon heavy metal (indium) insertion and upon composite formation. Antimicrobial photodynamic therapy comparative studies were done on quaternized and unquaternized indium porphyrins conjugated to GQDs. Complex 3-GQDs exhibited the highest antibacterial activities compared to other complexes, and this was attributed to the high ΦΔΦΔ which plays an imperative role in photodynamic therapy applications.
- Full Text:
- Date Issued: 2022
Photodynamic therapy activity of 5, 10, 15-tris (5-bromo-2-thienyl), 20 (phenylcarboxy) porphyrin conjugated to graphene quantum dot against MCF-7 breast cancer cells
- Makola, Lekgowa Collen, Nwahahra, Nnamdi, Managa, Muthumuni, Nyokong, Tebello
- Authors: Makola, Lekgowa Collen , Nwahahra, Nnamdi , Managa, Muthumuni , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300244 , vital:57909 , xlink:href="https://doi.org/10.1080/00958972.2022.2087515"
- Description: A novel 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin and its gallium derivative have been synthesized and fully characterized by various spectroscopic techniques and their respective photophysical and photochemical properties, such as the singlet oxygen quantum yield (ΦΔ), fluorescence quantum yield (ΦF) and triplet lifetime (τT) were determined. The complexes were conjugated to PEI_GQDs resulting is stable conjugates, owing to strong π–π stacking interaction between the PEI_GQDs and the porphyrins. PDT studies were carried out on these nanoconjugates and results obtained indicated they are suitable candidates for further in-depth PDT studies.
- Full Text:
- Date Issued: 2022
- Authors: Makola, Lekgowa Collen , Nwahahra, Nnamdi , Managa, Muthumuni , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300244 , vital:57909 , xlink:href="https://doi.org/10.1080/00958972.2022.2087515"
- Description: A novel 5,10,15-tris(5-bromo-2-thienyl),20(phenylcarboxy)porphyrin and its gallium derivative have been synthesized and fully characterized by various spectroscopic techniques and their respective photophysical and photochemical properties, such as the singlet oxygen quantum yield (ΦΔ), fluorescence quantum yield (ΦF) and triplet lifetime (τT) were determined. The complexes were conjugated to PEI_GQDs resulting is stable conjugates, owing to strong π–π stacking interaction between the PEI_GQDs and the porphyrins. PDT studies were carried out on these nanoconjugates and results obtained indicated they are suitable candidates for further in-depth PDT studies.
- Full Text:
- Date Issued: 2022
Photodynamic therapy characteristics of phthalocyanines in the presence of boron doped detonation nanodiamonds
- Matshitse, Refilwe, Nwaji, Njemuwa, Managa, Muthimuni, Chen, Zhi-Long, Nyokong, Tebello
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Managa, Muthimuni , Chen, Zhi-Long , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229921 , vital:49723 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102705"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activities of benzothiazole substituted zinc phthalocyanine (Pc): 1 (asymmetrically substituted and composed of no charges), 2 (asymmetrically substituted and composed of three positive charges), and 3 (symmetrically substituted and composed of four positive charges), are presented. The triplet and singlet oxygen quantum yields were highest for complex 2 showing the importance of asymmetry and charge. The complexes are covalently and non-covalently linked to B doped detonation nanodiamonds (B@DNDs) to yield nanohybrids (B@DNDs-1, B@DNDs-2, B@DNDs-3). The presence of B@DNDs, asymmetry and positive charge resulted in improved PDT with the lowest cell viability being observed for B@DNDs-2 at 5%. The cell viability ranged from 5% to 7% for the nanohybrids compared to 19–26% for Pcs alone.
- Full Text:
- Date Issued: 2022
- Authors: Matshitse, Refilwe , Nwaji, Njemuwa , Managa, Muthimuni , Chen, Zhi-Long , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/229921 , vital:49723 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102705"
- Description: The synthesis, photophysicochemical and photodynamic therapy (PDT) activities of benzothiazole substituted zinc phthalocyanine (Pc): 1 (asymmetrically substituted and composed of no charges), 2 (asymmetrically substituted and composed of three positive charges), and 3 (symmetrically substituted and composed of four positive charges), are presented. The triplet and singlet oxygen quantum yields were highest for complex 2 showing the importance of asymmetry and charge. The complexes are covalently and non-covalently linked to B doped detonation nanodiamonds (B@DNDs) to yield nanohybrids (B@DNDs-1, B@DNDs-2, B@DNDs-3). The presence of B@DNDs, asymmetry and positive charge resulted in improved PDT with the lowest cell viability being observed for B@DNDs-2 at 5%. The cell viability ranged from 5% to 7% for the nanohybrids compared to 19–26% for Pcs alone.
- Full Text:
- Date Issued: 2022
Phthalocyanine based fabricated exfoliated graphite photoanode for electrodegradation of 4-acetamidophenol under visible light irradiation
- Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295809 , vital:57380 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114115"
- Description: In this study exfoliated graphite (EG) was prepared from natural graphite flakes and incorporated with zinc phthalocyanine for fabrication of photoanode. The electron transfer capabilities of fabricated photoanode were examined by using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Electrophotocatalytic degradation of 4-acetamidophenol in 0.1 M Na2SO4 electrolyte was performed. The photoanode with zinc phthalocyanine (EG-ZnPc) displayed better degradation compared to when only exfoliated graphite was used (EG). Furthermore, electrophotocatalytic degradation gave better performance (removal efficiency of 47.76%) than when individual electrochemical degradation and photodegradation techniques were used.
- Full Text:
- Date Issued: 2022
- Authors: Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295809 , vital:57380 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114115"
- Description: In this study exfoliated graphite (EG) was prepared from natural graphite flakes and incorporated with zinc phthalocyanine for fabrication of photoanode. The electron transfer capabilities of fabricated photoanode were examined by using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Electrophotocatalytic degradation of 4-acetamidophenol in 0.1 M Na2SO4 electrolyte was performed. The photoanode with zinc phthalocyanine (EG-ZnPc) displayed better degradation compared to when only exfoliated graphite was used (EG). Furthermore, electrophotocatalytic degradation gave better performance (removal efficiency of 47.76%) than when individual electrochemical degradation and photodegradation techniques were used.
- Full Text:
- Date Issued: 2022
Promotion of Catalytic Oxygen Reduction Reactions
- Wei, Yuqin, Zhao, Long, Yuan, Rui, Xue, Zhaoli, Mack, John, Chivumba, Choonzo, Nyokong, Tebello, Zhang, Jianming
- Authors: Wei, Yuqin , Zhao, Long , Yuan, Rui , Xue, Zhaoli , Mack, John , Chivumba, Choonzo , Nyokong, Tebello , Zhang, Jianming
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300347 , vital:57919 , xlink:href="https://doi.org/10.1021/acs.inorgchem.2c01591"
- Description: Three ABAB-type cobalt meso-tetraarylporphyrins with fluorine (F-CoPor), acetic acid (AC-CoPor), and cyanoacetic acid (CN-CoPor) groups at the para-positions of phenyl rings at the 10,20-positions are synthesized and evaluated as catalysts for oxygen reduction reactions (ORRs). In density functional theory calculations, the frontier molecular orbitals of these complexes were found to be stabilized relative to model complexes with electron-withdrawing atoms or moieties on the meso-aryl rings. Electrochemical measurements suggest that electrodes with CN-CoPor (CN-CoPor/C) exhibit the most positive ORR potential values and the highest limiting current density in both acidic and alkali electrolytes, while the F-CoPor/C electrocatalyst exhibits extremely low ORR performance. The electron transfer numbers for the electrocatalysts are more than 3.0, indicating that a mixture of 2- and 4-electron transfer pathways occurs. The results demonstrate that coupling the hydrogen bonding properties and electron-withdrawing abilities through rational design of the substituent at the meso-position is an efficient way to modify the ORR performance.
- Full Text:
- Date Issued: 2022
- Authors: Wei, Yuqin , Zhao, Long , Yuan, Rui , Xue, Zhaoli , Mack, John , Chivumba, Choonzo , Nyokong, Tebello , Zhang, Jianming
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300347 , vital:57919 , xlink:href="https://doi.org/10.1021/acs.inorgchem.2c01591"
- Description: Three ABAB-type cobalt meso-tetraarylporphyrins with fluorine (F-CoPor), acetic acid (AC-CoPor), and cyanoacetic acid (CN-CoPor) groups at the para-positions of phenyl rings at the 10,20-positions are synthesized and evaluated as catalysts for oxygen reduction reactions (ORRs). In density functional theory calculations, the frontier molecular orbitals of these complexes were found to be stabilized relative to model complexes with electron-withdrawing atoms or moieties on the meso-aryl rings. Electrochemical measurements suggest that electrodes with CN-CoPor (CN-CoPor/C) exhibit the most positive ORR potential values and the highest limiting current density in both acidic and alkali electrolytes, while the F-CoPor/C electrocatalyst exhibits extremely low ORR performance. The electron transfer numbers for the electrocatalysts are more than 3.0, indicating that a mixture of 2- and 4-electron transfer pathways occurs. The results demonstrate that coupling the hydrogen bonding properties and electron-withdrawing abilities through rational design of the substituent at the meso-position is an efficient way to modify the ORR performance.
- Full Text:
- Date Issued: 2022
Reaction of Perrhenate with Phthalocyanine Derivatives in the Presence of Reducing Agents and Rhenium Oxide Nanoparticles in Biomedical Applications
- Ntsimango, Songeziwe, Gandidzanwa, Sendibitiyosi, Joseph, Sinelizwi V, Hosten, Eric C, Randall, Marvin, Edkins, Adrienne L, Khene, Samson M, Mashazi, Philani N, Nyokong, Tebello, Abrahams, Abubak’r, Tshentu, Zenixole R
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
- Authors: Ntsimango, Songeziwe , Gandidzanwa, Sendibitiyosi , Joseph, Sinelizwi V , Hosten, Eric C , Randall, Marvin , Edkins, Adrienne L , Khene, Samson M , Mashazi, Philani N , Nyokong, Tebello , Abrahams, Abubak’r , Tshentu, Zenixole R
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300257 , vital:57910 , xlink:href="https://doi.org/10.1002/open.202200037"
- Description: A novel alternative route to access rhenium(V)−phthalocyanine complexes through direct metalation of metal-free phthalocyanines (H2Pcs) with a rhenium(VII) salt in the presence of various two-electron reducing agents is presented. Direct ion metalation of tetraamino- or tetranitrophthalocyanine with perrhenate (ReO4−) in the presence of triphenylphosphine led to oxidative decomposition of the H2Pcs, giving their respective phthalonitriles. Conversely, treatment of H2Pcs with ReO4− employing sodium metabisulfite yielded the desired ReVO−Pc complex. Finally, reaction of H2Pcs with ReO4− and NaBH4 as reducing agent led to the formation of rhenium oxide (RexOy) nanoparticles (NPs). The NP synthesis was optimised, and the RexOy NPs were capped with folic acid (FA) conjugated with tetraaminophthalocyanine (TAPc) to enhance their cancer cell targeting ability. The cytotoxicity profile of the resultant RexOy−TAPc−FA NPs was assessed and found to be greater than 80 % viability in four cell lines, namely, MDA−MB-231, HCC7, HCC1806 and HEK293T. Non-cytotoxic concentrations were determined and employed in cancer cell localization studies. The particle size effect on localization of NPs was also investigated using confocal fluorescence and transmission electron microscopy. The smaller NPs (≈10 nm) were found to exhibit stronger fluorescence properties than the ≈50 nm NPs and exhibited better cell localization ability than the ≈50 nm NPs.
- Full Text:
- Date Issued: 2022
Sn (IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy
- Magaela, N Bridged, Matshitse, Refilwe, Balaji, Babu, Managa, Muthumuni, Prinsloo, Earl, Nyokong, Tebello
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022