Detection of the in vitro modulation of Plasmodium falciparum Arf1 by Sec7 and ArfGAP domains using a colorimetric plate-based assay:
- Swart, Tarryn, Khan, Farrah D, Ntlantsana, Apelele, Laming, Dustin, Veale, Clinton G L, Przyborski, Jude M, Edkins, Adrienne L, Hoppe, Heinrich C
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
- Authors: Swart, Tarryn , Khan, Farrah D , Ntlantsana, Apelele , Laming, Dustin , Veale, Clinton G L , Przyborski, Jude M , Edkins, Adrienne L , Hoppe, Heinrich C
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165418 , vital:41242 , https://0-doi.org.wam.seals.ac.za/10.1038/s41598-020-61101-3
- Description: The regulation of human Arf1 GTPase activity by ArfGEFs that stimulate GDP/GTP exchange and ArfGAPs that mediate GTP hydrolysis has attracted attention for the discovery of Arf1 inhibitors as potential anti-cancer agents. The malaria parasite Plasmodium falciparum encodes a Sec7 domain-containing protein - presumably an ArfGEF - and two putative ArfGAPs, as well as an Arf1 homologue (PfArf1) that is essential for blood-stage parasite viability. However, ArfGEF and ArfGAP-mediated activation/deactivation of PfArf1 has not been demonstrated.
- Full Text:
- Date Issued: 2020
PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity
- Njunge, James M, Mandal, Pradipta, Przyborski, Jude M, Boshoff, Aileen, Pesce, Eva-Rachele, Blatch, Gregory L
- Authors: Njunge, James M , Mandal, Pradipta , Przyborski, Jude M , Boshoff, Aileen , Pesce, Eva-Rachele , Blatch, Gregory L
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431739 , vital:72800 , xlink:href="https://doi.org/10.1016/j.biocel.2015.02.008"
- Description: Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
- Full Text:
- Date Issued: 2015
- Authors: Njunge, James M , Mandal, Pradipta , Przyborski, Jude M , Boshoff, Aileen , Pesce, Eva-Rachele , Blatch, Gregory L
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431739 , vital:72800 , xlink:href="https://doi.org/10.1016/j.biocel.2015.02.008"
- Description: Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
- Full Text:
- Date Issued: 2015
Plasmodium falciparum Hop (PfHop) interacts with the Hsp70 chaperone in a nucleotide-dependent fashion and exhibits ligand selectivity
- Zininga, Tawanda, Makumire, Stanley, Gitau, Grace W, Njunge, James M, Pooe, Ofentse J, Klimek, Hanna, Scheurr, Robina, Raifer, Hartmann, Prinsloo, Earl, Przyborski, Jude M, Hoppe, Heinrich C, Shonhai, Addmore
- Authors: Zininga, Tawanda , Makumire, Stanley , Gitau, Grace W , Njunge, James M , Pooe, Ofentse J , Klimek, Hanna , Scheurr, Robina , Raifer, Hartmann , Prinsloo, Earl , Przyborski, Jude M , Hoppe, Heinrich C , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431752 , vital:72801 , xlink:href=" https://doi.org/10.1371/journal.pone.0135326"
- Description: Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses.
- Full Text:
- Date Issued: 2015
- Authors: Zininga, Tawanda , Makumire, Stanley , Gitau, Grace W , Njunge, James M , Pooe, Ofentse J , Klimek, Hanna , Scheurr, Robina , Raifer, Hartmann , Prinsloo, Earl , Przyborski, Jude M , Hoppe, Heinrich C , Shonhai, Addmore
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431752 , vital:72801 , xlink:href=" https://doi.org/10.1371/journal.pone.0135326"
- Description: Heat shock proteins (Hsps) play an important role in the development and pathogenicity of malaria parasites. One of the most prominent functions of Hsps is to facilitate the folding of other proteins. Hsps are thought to play a crucial role when malaria parasites invade their host cells and during their subsequent development in hepatocytes and red blood cells. It is thought that Hsps maintain proteostasis under the unfavourable conditions that malaria parasites encounter in the host environment. Although heat shock protein 70 (Hsp70) is capable of independent folding of some proteins, its functional cooperation with heat shock protein 90 (Hsp90) facilitates folding of some proteins such as kinases and steroid hormone receptors into their fully functional forms. The cooperation of Hsp70 and Hsp90 occurs through an adaptor protein called Hsp70-Hsp90 organising protein (Hop). We previously characterised the Hop protein from Plasmodium falciparum (PfHop). We observed that the protein co-localised with the cytosol-localised chaperones, PfHsp70-1 and PfHsp90 at the blood stages of the malaria parasite. In the current study, we demonstrated that PfHop is a stress-inducible protein. We further explored the direct interaction between PfHop and PfHsp70-1 using far Western and surface plasmon resonance (SPR) analyses.
- Full Text:
- Date Issued: 2015
- «
- ‹
- 1
- ›
- »