The effects of elevated atmospheric CO2 concentration on the biological control of invasive aquatic weeds
- Baso, Nompumelelo C, Coetzee, Julie A, Ripley, Bradford S, Hill, Martin P
- Authors: Baso, Nompumelelo C , Coetzee, Julie A , Ripley, Bradford S , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419423 , vital:71643 , xlink:href="https://doi.org/10.1016/j.aquabot.2020.103348"
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
- Full Text:
- Date Issued: 2021
- Authors: Baso, Nompumelelo C , Coetzee, Julie A , Ripley, Bradford S , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419423 , vital:71643 , xlink:href="https://doi.org/10.1016/j.aquabot.2020.103348"
- Description: There has been a rapid increase in atmospheric CO2 concentration, from pre-industrial values of 280 ppm to more than 400 ppm currently, and this is expected to double by the end of the 21st century. Studies have shown that plants grown at elevated CO2 concentrations have increased growth rates and invest more in carbon-based defences. This has important implications for the management of invasive alien plants, especially using biological control which is mostly dependent on herbivorous insects. The aim of this study was to investigate the effects of elevated atmospheric CO2 on the biological control of four invasive aquatic weeds (Azolla filiculoides, Salvinia molesta, Pistia stratiotes and Myriophyllum aquaticum). These species are currently under successful control by their respective biological control agents (Stenopelmus rufinasus, Cyrtobagous salviniae, Neohydronomus affinis, and Lysathia sp.) in South Africa. The plant species were grown in a two factorial design experiment, where atmospheric CO2 concentrations were set at ambient (400 ppm) or elevated (800 ppm), and plants were either subjected to or not subjected to herbivory by their target biological control agents. There was an overall increase in biomass production and C:N across all species at elevated CO2, both in the absence and presence of biological control, although C:N of M. aquaticum and biomass of A. filiculoides with herbivory were not constant with this trend. Insect feeding damage was reduced by elevated CO2, except for S. molesta. Thus, we can expect that plants will respond differently to CO2 increase, but the general trend suggests that these species will become more challenging to manage through biological control in future.
- Full Text:
- Date Issued: 2021
The effect of herbivory by the mite Orthogalumna terebrantis on the growth and photosynthetic performance of water hyacinth (Eichhornia crassipes)
- Marlin, Danica, Hill, Martin P, Ripley, Bradford S, Strauss, Abram J, Byrne, Marcus J
- Authors: Marlin, Danica , Hill, Martin P , Ripley, Bradford S , Strauss, Abram J , Byrne, Marcus J
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419411 , vital:71642 , xlink:href="https://doi.org/10.1016/j.aquabot.2012.09.005"
- Description: Eutrophication of fresh water systems is one of the most important factors contributing to the invasion of fresh water bodies by water hyacinth, Eichhornia crassipes. The South American mite, Orthogalumna terebrantis, established on the weed in South Africa in the late 1980s, but the impact of mite herbivory on the weed has never been quantified. Water hyacinth was grown under low, medium and high nitrogen and phosphorus nutrient conditions and the effect of mite herbivory on the weed's growth was examined. Additionally, the impact of different mite herbivory intensities on the weed's photosynthetic performance was examined because herbivory may have more subtle effects on the plant than can be seen from changes in plant growth parameters. Water nutrient content had a great impact on plant growth, but growth was unaffected by mite herbivory in all levels of nutrients tested. Photosynthetic performance of water hyacinth leaves exposed to varying levels of mite herbivory was assessed by measuring net photosynthetic rate (A), leaf conductance (gl), transpiration rate (E) and intercellular CO2 concentration (Ci), and by measuring specific fluorescence parameters including maximal fluorescence (Fm), efficiency of photosystem II (Fv/Fm) and certain JIP-test parameters. Photosynthesis decreased as mite herbivory increased, but there was a positive correlation between gl, E and Ci, and the amount of leaf tissue damaged through mite feeding. The efficiency of photosystem II (PSII) decreased as mite herbivory increased, as seen in the altered fluorescence emission of mite-damaged plants, but this was not the consequence of decreased chlorophyll content. Feeding by O. terebrantis thus decreased water hyacinth photosynthetic rate and the light reaction performance, even at relatively low mite densities. These results show that the impact of a biological control agent on its host plant may not be obvious at a plant growth level, but may nonetheless affect the plant at a physiological level.
- Full Text:
- Date Issued: 2013
- Authors: Marlin, Danica , Hill, Martin P , Ripley, Bradford S , Strauss, Abram J , Byrne, Marcus J
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419411 , vital:71642 , xlink:href="https://doi.org/10.1016/j.aquabot.2012.09.005"
- Description: Eutrophication of fresh water systems is one of the most important factors contributing to the invasion of fresh water bodies by water hyacinth, Eichhornia crassipes. The South American mite, Orthogalumna terebrantis, established on the weed in South Africa in the late 1980s, but the impact of mite herbivory on the weed has never been quantified. Water hyacinth was grown under low, medium and high nitrogen and phosphorus nutrient conditions and the effect of mite herbivory on the weed's growth was examined. Additionally, the impact of different mite herbivory intensities on the weed's photosynthetic performance was examined because herbivory may have more subtle effects on the plant than can be seen from changes in plant growth parameters. Water nutrient content had a great impact on plant growth, but growth was unaffected by mite herbivory in all levels of nutrients tested. Photosynthetic performance of water hyacinth leaves exposed to varying levels of mite herbivory was assessed by measuring net photosynthetic rate (A), leaf conductance (gl), transpiration rate (E) and intercellular CO2 concentration (Ci), and by measuring specific fluorescence parameters including maximal fluorescence (Fm), efficiency of photosystem II (Fv/Fm) and certain JIP-test parameters. Photosynthesis decreased as mite herbivory increased, but there was a positive correlation between gl, E and Ci, and the amount of leaf tissue damaged through mite feeding. The efficiency of photosystem II (PSII) decreased as mite herbivory increased, as seen in the altered fluorescence emission of mite-damaged plants, but this was not the consequence of decreased chlorophyll content. Feeding by O. terebrantis thus decreased water hyacinth photosynthetic rate and the light reaction performance, even at relatively low mite densities. These results show that the impact of a biological control agent on its host plant may not be obvious at a plant growth level, but may nonetheless affect the plant at a physiological level.
- Full Text:
- Date Issued: 2013
Weevil borne microbes contribute as much to the reduction of photosynthesis in water hyacinth as does herbivory
- Venter, Nic, Hill, Martin P, Hutchinson, Sarah-Leigh, Ripley, Bradford S
- Authors: Venter, Nic , Hill, Martin P , Hutchinson, Sarah-Leigh , Ripley, Bradford S
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423573 , vital:72073 , xlink:href="https://doi.org/10.1016/j.biocontrol.2012.10.011"
- Description: Arthropods released for weed biocontrol can have effects other than simply removing biomass and frequently decrease photosynthetic rate more than can be attributed to the mere loss of photosynthetic surface area. Some of this effect may result because biological control agents facilitate the transfer and ingress of deleterious microbes into plant tissues on which they feed. We evaluated this facilitation effect using water hyacinth (Eichhornia crassipes) and a weevil (Neochetina eichhorniae) and compared the reductions in photosynthetic rates between leaves subject to herbivory by adult weevils sterilized with 3.5% chlorine bleach, to those that were unsterilized. The results showed that weevils carried both fungi and bacteria, transferred these to leaves on which they fed, and that microbes and biomass removal contributed almost equally to the 37% decrease in photosynthetic productivity. Hence, maximising the effectiveness of using arthropods that damage leaf surfaces for biocontrol requires the presence of microorganisms that are deleterious to plants.
- Full Text:
- Date Issued: 2013
- Authors: Venter, Nic , Hill, Martin P , Hutchinson, Sarah-Leigh , Ripley, Bradford S
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423573 , vital:72073 , xlink:href="https://doi.org/10.1016/j.biocontrol.2012.10.011"
- Description: Arthropods released for weed biocontrol can have effects other than simply removing biomass and frequently decrease photosynthetic rate more than can be attributed to the mere loss of photosynthetic surface area. Some of this effect may result because biological control agents facilitate the transfer and ingress of deleterious microbes into plant tissues on which they feed. We evaluated this facilitation effect using water hyacinth (Eichhornia crassipes) and a weevil (Neochetina eichhorniae) and compared the reductions in photosynthetic rates between leaves subject to herbivory by adult weevils sterilized with 3.5% chlorine bleach, to those that were unsterilized. The results showed that weevils carried both fungi and bacteria, transferred these to leaves on which they fed, and that microbes and biomass removal contributed almost equally to the 37% decrease in photosynthetic productivity. Hence, maximising the effectiveness of using arthropods that damage leaf surfaces for biocontrol requires the presence of microorganisms that are deleterious to plants.
- Full Text:
- Date Issued: 2013
Herbivory-induced reduction in photosynthetic productivity of water hyacinth, Eichhornia crassipes (Martius) Solms-Laubach (Pontederiaceae), is not directly related to reduction in photosynthetic leaf areas
- Ripley, Bradford S, deWet, L, Hill, Martin P
- Authors: Ripley, Bradford S , deWet, L , Hill, Martin P
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451425 , vital:75048 , https://hdl.handle.net/10520/EJC32746
- Description: The purpose of this investigation was to determine whether the reduced photosynthetic productivity of water hyacinth plants subject to N. eichhorniae adult feeding was simply the result of reduced leaf area, or if more complex mechanisms were involved.
- Full Text:
- Date Issued: 2008
- Authors: Ripley, Bradford S , deWet, L , Hill, Martin P
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/451425 , vital:75048 , https://hdl.handle.net/10520/EJC32746
- Description: The purpose of this investigation was to determine whether the reduced photosynthetic productivity of water hyacinth plants subject to N. eichhorniae adult feeding was simply the result of reduced leaf area, or if more complex mechanisms were involved.
- Full Text:
- Date Issued: 2008
- «
- ‹
- 1
- ›
- »