Dimethylglyoxime based ion-imprinted polymer for the determination of Ni(II) ions from aqueous samples
- Rammika, Modise, Darko, Godfrey, Tshentu, Zenixole R, Sewry, Joyce D, Torto, Nelson
- Authors: Rammika, Modise , Darko, Godfrey , Tshentu, Zenixole R , Sewry, Joyce D , Torto, Nelson
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6590 , http://hdl.handle.net/10962/d1004173
- Description: A Ni(II)-dimethylglyoxime ion-imprinted polymer {Ni(II)-DMG IIP} was synthesised by the bulk polymerisation method. The morphology of the Ni(II)-DMG IIP and non-imprinted polymer were observed by scanning electron microscopy and the chemical structures were evaluated by infrared spectroscopy. Selectivity of the Ni(II)-DMG IIP was studied by analysing, using an inductively coupled plasma-optical emission spectrometer, for Ni(II) ions that were spiked with varying concentrations of Co(II), Cu(II), Zn(II), Pd(II), Fe(II), Ca(II), Mg(II), Na(I) and K(I) in aqueous samples. The studies revealed Ni(II) recoveries ranging from 93 to 100% in aqueous solutions with minimal interference from competing ions. Enrichment factors ranged from 2 to 18 with a binding capacity of 120 μg∙g−1. Co(II) was the only ion found to slightly interfere with the determination of Ni(II). Selectivity studies confirmed that the Ni(II)-DMG IIP had very good selectivity, characterised by %RSD of less than 5%. The limits of detection and quantification were 3x10-4 μg∙mℓ−1 and 9x10-4 μg∙mℓ−1, respectively. The accuracy of the method was validated by analysing a custom solution of certified reference material (SEP-3) and the concentration of Ni(II) obtained was in close agreement with the certified one. The Ni(II)-DMG IIP was successfully employed to trap Ni(II) ions from a matrix of sea, river and sewage water. It is believed that the Ni(II)-DMG IIP has potential to be used as sorbent material for pre-concentration of Ni(II) ions from aqueous solutions by solid-phase extraction.
- Full Text:
- Date Issued: 2011
- Authors: Rammika, Modise , Darko, Godfrey , Tshentu, Zenixole R , Sewry, Joyce D , Torto, Nelson
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6590 , http://hdl.handle.net/10962/d1004173
- Description: A Ni(II)-dimethylglyoxime ion-imprinted polymer {Ni(II)-DMG IIP} was synthesised by the bulk polymerisation method. The morphology of the Ni(II)-DMG IIP and non-imprinted polymer were observed by scanning electron microscopy and the chemical structures were evaluated by infrared spectroscopy. Selectivity of the Ni(II)-DMG IIP was studied by analysing, using an inductively coupled plasma-optical emission spectrometer, for Ni(II) ions that were spiked with varying concentrations of Co(II), Cu(II), Zn(II), Pd(II), Fe(II), Ca(II), Mg(II), Na(I) and K(I) in aqueous samples. The studies revealed Ni(II) recoveries ranging from 93 to 100% in aqueous solutions with minimal interference from competing ions. Enrichment factors ranged from 2 to 18 with a binding capacity of 120 μg∙g−1. Co(II) was the only ion found to slightly interfere with the determination of Ni(II). Selectivity studies confirmed that the Ni(II)-DMG IIP had very good selectivity, characterised by %RSD of less than 5%. The limits of detection and quantification were 3x10-4 μg∙mℓ−1 and 9x10-4 μg∙mℓ−1, respectively. The accuracy of the method was validated by analysing a custom solution of certified reference material (SEP-3) and the concentration of Ni(II) obtained was in close agreement with the certified one. The Ni(II)-DMG IIP was successfully employed to trap Ni(II) ions from a matrix of sea, river and sewage water. It is believed that the Ni(II)-DMG IIP has potential to be used as sorbent material for pre-concentration of Ni(II) ions from aqueous solutions by solid-phase extraction.
- Full Text:
- Date Issued: 2011
Introducing chemistry students to the “real world” of chemistry
- Brown, Michael E, Cosser, Ronald C, Davies-Coleman, Michael T, Kaye, Perry T, Klein, Rosalyn, Lamprecht, Emmanuel, Lobb, Kevin A, Nyokong, Tebello, Sewry, Joyce D, Tshentu, Zenixole R, Van der Zeyde, Tino, Watkins, Gareth M
- Authors: Brown, Michael E , Cosser, Ronald C , Davies-Coleman, Michael T , Kaye, Perry T , Klein, Rosalyn , Lamprecht, Emmanuel , Lobb, Kevin A , Nyokong, Tebello , Sewry, Joyce D , Tshentu, Zenixole R , Van der Zeyde, Tino , Watkins, Gareth M
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/449360 , vital:74814 , xlink:href="https://doi.org/10.1021/ed8001539"
- Description: A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at second-year level with practical projects in which student teams formulate and prepare relatively simple chemical products for marketing, followed a year later by a more advanced study of the feasibility of producing and marketing a fine chemical on a commercial scale.
- Full Text:
- Date Issued: 2010
- Authors: Brown, Michael E , Cosser, Ronald C , Davies-Coleman, Michael T , Kaye, Perry T , Klein, Rosalyn , Lamprecht, Emmanuel , Lobb, Kevin A , Nyokong, Tebello , Sewry, Joyce D , Tshentu, Zenixole R , Van der Zeyde, Tino , Watkins, Gareth M
- Date: 2010
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/449360 , vital:74814 , xlink:href="https://doi.org/10.1021/ed8001539"
- Description: A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at second-year level with practical projects in which student teams formulate and prepare relatively simple chemical products for marketing, followed a year later by a more advanced study of the feasibility of producing and marketing a fine chemical on a commercial scale.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »