Modern supratidal microbialites fed by groundwater: functional drivers, value and trajectories
- Rishworth, Gavin M, Dodd, Carla, Perissinotto, Renzo, Bornman, Thomas G, Adams, Janine B, Anderson, Callum R, Cawthra, Hayley C, Dorrington, Hayley C, du Toit, Hendrik, Edworthy, Carla, Gibb, Ross-Lynne A, Human, Lucienne R D, Isemonger, Eric W, Lemley, David A, Miranda, Nelson A, Peer, Nasreen, Raw, Jacqueline L, Smith, Alan M, Steyn, Paul-Pierre, Strydom, Nadine A, Teske, Peter R, Welman, Peter R
- Authors: Rishworth, Gavin M , Dodd, Carla , Perissinotto, Renzo , Bornman, Thomas G , Adams, Janine B , Anderson, Callum R , Cawthra, Hayley C , Dorrington, Hayley C , du Toit, Hendrik , Edworthy, Carla , Gibb, Ross-Lynne A , Human, Lucienne R D , Isemonger, Eric W , Lemley, David A , Miranda, Nelson A , Peer, Nasreen , Raw, Jacqueline L , Smith, Alan M , Steyn, Paul-Pierre , Strydom, Nadine A , Teske, Peter R , Welman, Peter R
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/426008 , vital:72306 , xlink:href="https://doi.org/10.1016/j.earscirev.2020.103364"
- Description: Microbial mats were the dominant habitat type in shallow marine environments between the Palaeoarchean and Phanerozoic. Many of these (termed ‘microbialites’) calcified as they grew but such lithified mats are rare along modern coasts for reasons such as unsuitable water chemistry, destructive metazoan influences and competition with other reef-builders such as corals or macroalgae. Nonetheless, extant microbialites occur in unique coastal ecosystems such as the Exuma Cays, Bahamas or Lake Clifton and Hamelin Pool, Australia, where limitations such as calcium carbonate availability or destructive bioturbation are diminished. Along the coast of South Africa, extensive distributions of living microbialites (including layered stromatolites) have been discovered and described since the early 2000s. Unlike the Bahamian and Australian ecosystems, the South African microbialites form exclusively in the supratidal coastal zone at the convergence of emergent groundwater seepage. Similar systems were documented subsequently in southwestern Australia, Northern Ireland and the Scottish Hebrides, as recently as 2018, revealing that supratidal microbialites have a global distribution. This review uses the best-studied formations to contextualise formative drivers and processes of these supratidal ecosystems and highlight their geological, ecological and societal relevance.
- Full Text:
- Date Issued: 2020
- Authors: Rishworth, Gavin M , Dodd, Carla , Perissinotto, Renzo , Bornman, Thomas G , Adams, Janine B , Anderson, Callum R , Cawthra, Hayley C , Dorrington, Hayley C , du Toit, Hendrik , Edworthy, Carla , Gibb, Ross-Lynne A , Human, Lucienne R D , Isemonger, Eric W , Lemley, David A , Miranda, Nelson A , Peer, Nasreen , Raw, Jacqueline L , Smith, Alan M , Steyn, Paul-Pierre , Strydom, Nadine A , Teske, Peter R , Welman, Peter R
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/426008 , vital:72306 , xlink:href="https://doi.org/10.1016/j.earscirev.2020.103364"
- Description: Microbial mats were the dominant habitat type in shallow marine environments between the Palaeoarchean and Phanerozoic. Many of these (termed ‘microbialites’) calcified as they grew but such lithified mats are rare along modern coasts for reasons such as unsuitable water chemistry, destructive metazoan influences and competition with other reef-builders such as corals or macroalgae. Nonetheless, extant microbialites occur in unique coastal ecosystems such as the Exuma Cays, Bahamas or Lake Clifton and Hamelin Pool, Australia, where limitations such as calcium carbonate availability or destructive bioturbation are diminished. Along the coast of South Africa, extensive distributions of living microbialites (including layered stromatolites) have been discovered and described since the early 2000s. Unlike the Bahamian and Australian ecosystems, the South African microbialites form exclusively in the supratidal coastal zone at the convergence of emergent groundwater seepage. Similar systems were documented subsequently in southwestern Australia, Northern Ireland and the Scottish Hebrides, as recently as 2018, revealing that supratidal microbialites have a global distribution. This review uses the best-studied formations to contextualise formative drivers and processes of these supratidal ecosystems and highlight their geological, ecological and societal relevance.
- Full Text:
- Date Issued: 2020
Tufa stromatolite ecosystems on the South African south coast
- Perissinotto, Renzo, Bornman, Tommy G, Steyn, Paul-Pierre, Miranda, Nelson A F, Dorrington, Rosemary A, Matcher, Gwynneth F, Strydom, Nadine A, Peer, Nasreen
- Authors: Perissinotto, Renzo , Bornman, Tommy G , Steyn, Paul-Pierre , Miranda, Nelson A F , Dorrington, Rosemary A , Matcher, Gwynneth F , Strydom, Nadine A , Peer, Nasreen
- Date: 2014
- Language: English
- Type: Article
- Identifier: vital:6490 , http://hdl.handle.net/10962/d1014585 , http://dx.doi.org/10.1590/sajs.2014/20140011
- Description: Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution.
- Full Text:
- Date Issued: 2014
- Authors: Perissinotto, Renzo , Bornman, Tommy G , Steyn, Paul-Pierre , Miranda, Nelson A F , Dorrington, Rosemary A , Matcher, Gwynneth F , Strydom, Nadine A , Peer, Nasreen
- Date: 2014
- Language: English
- Type: Article
- Identifier: vital:6490 , http://hdl.handle.net/10962/d1014585 , http://dx.doi.org/10.1590/sajs.2014/20140011
- Description: Following the first description of living marine stromatolites along the South African east coast, new investigations along the south coast have revealed the occurrence of extensive fields of actively calcifying stromatolites. These stromatolites have been recorded at regular distances along a 200-km stretch of coastline, from Cape Recife in the east to the Storms River mouth in the west, with the highest density found between Schoenmakerskop and the Maitland River mouth. All active stromatolites are associated with freshwater seepage streams flowing from the dune cordon, which form rimstone dams and other accretions capable of retaining water in the supratidal platform. Resulting pools can reach a maximum depth of about 1 m and constitute a unique ecosystem in which freshwater and marine organisms alternate their dominance in response to vertical mixing and the balance between freshwater versus marine inflow. Although the factors controlling stromatolite growth are yet to be determined, nitrogen appears to be supplied mainly via the dune seeps. The epibenthic algal community within stromatolite pools is generally co-dominated by cyanobacteria and chlorophytes, with minimal diatom contribution.
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »