An ion-imprinted polymer for the selective extraction of mercury(II) ions in aqueous media
- Batlokwa, Bareki Shima, Chimuka, Luke, Tshentu, Zenixole R, Cukrowska, Ewa, Torto, Nelson
- Authors: Batlokwa, Bareki Shima , Chimuka, Luke , Tshentu, Zenixole R , Cukrowska, Ewa , Torto, Nelson
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6566 , http://hdl.handle.net/10962/d1004125
- Description: A double-imprinted polymer exhibiting high sensitivity for mercury(II) in aqueous solution is presented. Polymer particles imprinted with mercury(II) were synthesised by copolymerising the functional and cross-linking monomers, N’–[3– (Trimethoxysilyl)–propyl]diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS). A double-imprinting procedure employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer, was adopted. The imprinted polymer was characterised by FTIR, scanning electron microscopy (SEM) and the average size determined by screen analysis using standard test sieves. Relative selective coefficients (k`) of the imprinted polymer evaluated from selective binding studies between Hg2+ and Cu2+ or Hg2+ and Cd2+ were 10 588 and 3 147, respectively. These values indicated highly-favoured Hg2+ extractions over the 2 competing ions. The results of spiked and real water samples showed high extraction efficiencies of Hg2+ ions, (over 84%) as evaluated from the detected unextracted Hg2+ ions by ICP-OES. The method exhibited a dynamic response concentration range for Hg2+ between 0.01 and 20 μg/mℓ, with a detection limit (LOD, 3σ) of 0.000036 μg/mℓ (36 ng/ℓ) that meets the monitoring requirements for the USA EPA of 2 000 ng/ℓ for Hg2+ in drinking water. Generally, the data (n=10) had percentage relative standard deviations (%RSD) of less than 4%. Satisfactory results were also obtained when the prepared sorbent was applied for the pre-concentration of Hg2+ from an aqueous certified reference material. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre–concentration of mercury(II) ions in aqueous environments.
- Full Text:
- Date Issued: 2012
- Authors: Batlokwa, Bareki Shima , Chimuka, Luke , Tshentu, Zenixole R , Cukrowska, Ewa , Torto, Nelson
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6566 , http://hdl.handle.net/10962/d1004125
- Description: A double-imprinted polymer exhibiting high sensitivity for mercury(II) in aqueous solution is presented. Polymer particles imprinted with mercury(II) were synthesised by copolymerising the functional and cross-linking monomers, N’–[3– (Trimethoxysilyl)–propyl]diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS). A double-imprinting procedure employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer, was adopted. The imprinted polymer was characterised by FTIR, scanning electron microscopy (SEM) and the average size determined by screen analysis using standard test sieves. Relative selective coefficients (k`) of the imprinted polymer evaluated from selective binding studies between Hg2+ and Cu2+ or Hg2+ and Cd2+ were 10 588 and 3 147, respectively. These values indicated highly-favoured Hg2+ extractions over the 2 competing ions. The results of spiked and real water samples showed high extraction efficiencies of Hg2+ ions, (over 84%) as evaluated from the detected unextracted Hg2+ ions by ICP-OES. The method exhibited a dynamic response concentration range for Hg2+ between 0.01 and 20 μg/mℓ, with a detection limit (LOD, 3σ) of 0.000036 μg/mℓ (36 ng/ℓ) that meets the monitoring requirements for the USA EPA of 2 000 ng/ℓ for Hg2+ in drinking water. Generally, the data (n=10) had percentage relative standard deviations (%RSD) of less than 4%. Satisfactory results were also obtained when the prepared sorbent was applied for the pre-concentration of Hg2+ from an aqueous certified reference material. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre–concentration of mercury(II) ions in aqueous environments.
- Full Text:
- Date Issued: 2012
Selective removal of chromium (VI) from sulphates and other metal anions using an ion-imprinted polymer
- Pakade, Vusumzi E, Cukrowska, Ewa, Darkwa, James, Torto, Nelson, Chimuka, Luke
- Authors: Pakade, Vusumzi E , Cukrowska, Ewa , Darkwa, James , Torto, Nelson , Chimuka, Luke
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6588 , http://hdl.handle.net/10962/d1004171
- Description: A linear copolymer was prepared from 4-vinylpyridine and styrene. An ion-imprinted polymer (IIP) specific for Cr (VI) adsorption was prepared by copolymerisation of the quaternised linear copolymer (quaternised with 1,4-chlorobutane), 2-vinylpyridine functional monomer and ethylene glycol dimethacrylate (EGDMA), as the cross-linking monomer, in the presence of 1,1’-azobis(cyclohexanecarbonitrile) as initiator. Ammonium dichromate and aqueous methanol were used as a template and porogenic solvent, respectively. Leaching of the chromate template from the polymer particles was achieved with successive stirring of the ion-imprinted polymer (IIP) particles in 4 M HNO3 solutions to obtain leached materials, which were then used for selective rebinding of Cr (VI) ions from aqueous solutions. Similarly, the non-imprinted polymer/ control polymer (NIP/CP) material was also prepared under exactly the same conditions as the IIP but without the chromate anion template. Various parameters, such as solution pH, initial concentration, aqueous phase volume, sorbent dosage, contact time and leaching solution volumes, were investigated. Scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, BET surface area and pore size analysis were used for the characterisation of IIP (both unleached and leached) and CP materials. Optimal parameters were as follows: solution pH, 3; contact time, 120 min; eluent, 20 mℓ of 0.1 M NaOH; and sorbent amount, 125 mg. Maximum retention capacity of IIP and CP was 37.58 and 25.44 mg∙g-1, respectively. The extraction efficiencies of the IIP and CP were compared using a batch and SPE mode of extraction. In the absence of high concentrations of ions, especially sulphate ions, both CP and IIP demonstrated no differences in binding of Cr (VI), which was almost 100%. However, in the presence of high concentrations of sulphate ions, the selectivity on the CP completely collapsed. The study clearly demonstrates the suitably of the developed IIP for selective extraction of Cr (VI) in complex samples such as those from acid mine drainage. The selectivity was also compared by direct injection of the real-world sample, both spiked and non-spiked, into that obtained after IIP selective extraction. Despite the method’s very low detection limits for direct injection (below 1 μg∙ℓ-1), no Cr (VI) was obtained. However, after IIP selective extraction, spiked Cr (VI) was detected in the spiked sample.
- Full Text:
- Date Issued: 2011
- Authors: Pakade, Vusumzi E , Cukrowska, Ewa , Darkwa, James , Torto, Nelson , Chimuka, Luke
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6588 , http://hdl.handle.net/10962/d1004171
- Description: A linear copolymer was prepared from 4-vinylpyridine and styrene. An ion-imprinted polymer (IIP) specific for Cr (VI) adsorption was prepared by copolymerisation of the quaternised linear copolymer (quaternised with 1,4-chlorobutane), 2-vinylpyridine functional monomer and ethylene glycol dimethacrylate (EGDMA), as the cross-linking monomer, in the presence of 1,1’-azobis(cyclohexanecarbonitrile) as initiator. Ammonium dichromate and aqueous methanol were used as a template and porogenic solvent, respectively. Leaching of the chromate template from the polymer particles was achieved with successive stirring of the ion-imprinted polymer (IIP) particles in 4 M HNO3 solutions to obtain leached materials, which were then used for selective rebinding of Cr (VI) ions from aqueous solutions. Similarly, the non-imprinted polymer/ control polymer (NIP/CP) material was also prepared under exactly the same conditions as the IIP but without the chromate anion template. Various parameters, such as solution pH, initial concentration, aqueous phase volume, sorbent dosage, contact time and leaching solution volumes, were investigated. Scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, BET surface area and pore size analysis were used for the characterisation of IIP (both unleached and leached) and CP materials. Optimal parameters were as follows: solution pH, 3; contact time, 120 min; eluent, 20 mℓ of 0.1 M NaOH; and sorbent amount, 125 mg. Maximum retention capacity of IIP and CP was 37.58 and 25.44 mg∙g-1, respectively. The extraction efficiencies of the IIP and CP were compared using a batch and SPE mode of extraction. In the absence of high concentrations of ions, especially sulphate ions, both CP and IIP demonstrated no differences in binding of Cr (VI), which was almost 100%. However, in the presence of high concentrations of sulphate ions, the selectivity on the CP completely collapsed. The study clearly demonstrates the suitably of the developed IIP for selective extraction of Cr (VI) in complex samples such as those from acid mine drainage. The selectivity was also compared by direct injection of the real-world sample, both spiked and non-spiked, into that obtained after IIP selective extraction. Despite the method’s very low detection limits for direct injection (below 1 μg∙ℓ-1), no Cr (VI) was obtained. However, after IIP selective extraction, spiked Cr (VI) was detected in the spiked sample.
- Full Text:
- Date Issued: 2011
- «
- ‹
- 1
- ›
- »