Tuning the redox properties of Co-N4 macrocyclic complexes for the catalytic electrooxidation of glucose
- Villagra, Evelyn, Bedioui, Fethi, Nyokong, Tebello, Canales, J Carlos, Sancy, Mamie, Páez, Maritza A, Costamagna, Juan, Zagal, José H
- Authors: Villagra, Evelyn , Bedioui, Fethi , Nyokong, Tebello , Canales, J Carlos , Sancy, Mamie , Páez, Maritza A , Costamagna, Juan , Zagal, José H
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/268675 , vital:54221 , xlink:href="https://doi.org/10.1016/j.electacta.2008.02.006"
- Description: Graphite electrodes modified with four different cobalt N4 macrocyclics, namely Co tetrapentapyridinophthalocyanine, (CoTPenPyrPc), Co tetrapyridinoporphyrazine (CoTPyPz), Co octa(hydroxyethylthio)phthalocyanine (CoOEHTPc) and Co tetranitrophthalocyanine (CoTNPc) exhibit catalytic activity for the oxidation of glucose in alkaline media. The purpose of this work is to establish correlations between the catalytic activity of these complexes and their redox potential. The activity of the different modified electrodes was tested by linear voltammetry under hydrodynamic conditions using the rotating disk technique. Tafel plots constructed from mass-transport corrected currents give slopes ranging from 0.080 to 0.160 V/decade for the different catalysts which suggests that a first one-electron step is rate controlling with the symmetry of the energy barrier depending on the nature of the ligand of the Co complex. A plot of log I versus the Co(II)/(I) formal potential gives a volcano curve that also includes catalysts studied previously. This illustrates the concept that the formal potential of the catalyst needs to be tuned to a certain value for achieving maximum activity. A theoretical interpretation of these results is given in terms of Langmuir isotherms for the adsorption of glucose on the Co sites of the surface-confined metal complexes.
- Full Text:
- Date Issued: 2008
- Authors: Villagra, Evelyn , Bedioui, Fethi , Nyokong, Tebello , Canales, J Carlos , Sancy, Mamie , Páez, Maritza A , Costamagna, Juan , Zagal, José H
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/268675 , vital:54221 , xlink:href="https://doi.org/10.1016/j.electacta.2008.02.006"
- Description: Graphite electrodes modified with four different cobalt N4 macrocyclics, namely Co tetrapentapyridinophthalocyanine, (CoTPenPyrPc), Co tetrapyridinoporphyrazine (CoTPyPz), Co octa(hydroxyethylthio)phthalocyanine (CoOEHTPc) and Co tetranitrophthalocyanine (CoTNPc) exhibit catalytic activity for the oxidation of glucose in alkaline media. The purpose of this work is to establish correlations between the catalytic activity of these complexes and their redox potential. The activity of the different modified electrodes was tested by linear voltammetry under hydrodynamic conditions using the rotating disk technique. Tafel plots constructed from mass-transport corrected currents give slopes ranging from 0.080 to 0.160 V/decade for the different catalysts which suggests that a first one-electron step is rate controlling with the symmetry of the energy barrier depending on the nature of the ligand of the Co complex. A plot of log I versus the Co(II)/(I) formal potential gives a volcano curve that also includes catalysts studied previously. This illustrates the concept that the formal potential of the catalyst needs to be tuned to a certain value for achieving maximum activity. A theoretical interpretation of these results is given in terms of Langmuir isotherms for the adsorption of glucose on the Co sites of the surface-confined metal complexes.
- Full Text:
- Date Issued: 2008
Volcano correlations for the reactivity of surface-confined cobalt N4-macrocyclics for the electrocatalytic oxidation of 2-mercaptoacetate
- Claußen, Jan A, Ochoa, Gonzalo, Páez, Maritza, Costamagno, Juan, Gulppi, Miguel, Nyokong, Tebello, Bedioui, Fethi, Zagal, José H
- Authors: Claußen, Jan A , Ochoa, Gonzalo , Páez, Maritza , Costamagno, Juan , Gulppi, Miguel , Nyokong, Tebello , Bedioui, Fethi , Zagal, José H
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/268688 , vital:54222 , xlink:href="https://doi.org/10.1007/s10008-007-0336-y"
- Description: We have investigated the electrocatalytic activity of several substituted and unsubstituted cobalt–phthalocyanines of substituted tetraphenyl porphyrins and of vitamin B12, for the electro-oxidation of 2-mercaptoacetate, with the complexes pre-adsorbed on a pyrolytic graphite electrode. Several N4-macrocyclic were used to have a wide variety of Co(II)/(I) formal potentials. The electrocatalytic activity, measured as current at constant potential, increases with the Co(II)/(I) redox potential for porphyrins as Co–pentafluorotetraphenylporphyrin larger than Co–tetrasulfonatotetraphenylporphyrin larger than Co-2,2′,2″,2‴tetra-aminotetraphenylporphyrin and decreases for cobalt phthalocyanines as Co-3,4-octaethylhexyloxyphthalocyanine > Co–octamethoxyphthalocyanine > Co–tetranitrophthalocyanine Co–tetraaminophthalocyanine > Co–unsubstituted phthalocyanine > Co–tetrasulfonatophthalocyanine > Co–perfluorinated phthalocyanine. Vitamin B12 exhibits the maximum activity. A correlation of log I (at constant potential) versus the Co(II)/(I) formal potential of the catalysts gives a volcano curve. This clearly shows that the search for better catalysts for this reaction point to those N4-macrocyclic complexes with Co(II)/(I) formal potentials close to −0.84 V versus SCE, which correspond to an optimum situation for the interaction of the thiol with the active site.
- Full Text:
- Date Issued: 2008
- Authors: Claußen, Jan A , Ochoa, Gonzalo , Páez, Maritza , Costamagno, Juan , Gulppi, Miguel , Nyokong, Tebello , Bedioui, Fethi , Zagal, José H
- Date: 2008
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/268688 , vital:54222 , xlink:href="https://doi.org/10.1007/s10008-007-0336-y"
- Description: We have investigated the electrocatalytic activity of several substituted and unsubstituted cobalt–phthalocyanines of substituted tetraphenyl porphyrins and of vitamin B12, for the electro-oxidation of 2-mercaptoacetate, with the complexes pre-adsorbed on a pyrolytic graphite electrode. Several N4-macrocyclic were used to have a wide variety of Co(II)/(I) formal potentials. The electrocatalytic activity, measured as current at constant potential, increases with the Co(II)/(I) redox potential for porphyrins as Co–pentafluorotetraphenylporphyrin larger than Co–tetrasulfonatotetraphenylporphyrin larger than Co-2,2′,2″,2‴tetra-aminotetraphenylporphyrin and decreases for cobalt phthalocyanines as Co-3,4-octaethylhexyloxyphthalocyanine > Co–octamethoxyphthalocyanine > Co–tetranitrophthalocyanine Co–tetraaminophthalocyanine > Co–unsubstituted phthalocyanine > Co–tetrasulfonatophthalocyanine > Co–perfluorinated phthalocyanine. Vitamin B12 exhibits the maximum activity. A correlation of log I (at constant potential) versus the Co(II)/(I) formal potential of the catalysts gives a volcano curve. This clearly shows that the search for better catalysts for this reaction point to those N4-macrocyclic complexes with Co(II)/(I) formal potentials close to −0.84 V versus SCE, which correspond to an optimum situation for the interaction of the thiol with the active site.
- Full Text:
- Date Issued: 2008
- «
- ‹
- 1
- ›
- »