A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40
- Edkins, Adrienne L, Ludewig, M H, Blatch, Gregory L
- Authors: Edkins, Adrienne L , Ludewig, M H , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6465 , http://hdl.handle.net/10962/d1005794 , http://dx.doi.org/10.1016/j.biocel.2004.01.016
- Description: The process of assisted protein folding, characteristic of members of the heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) molecular chaperone families, is important for maintaining the structural integrity of cellular protein machinery under normal and stressful conditions. Hsp70 and Hsp40 cooperate to bind non-native protein conformations in a process of adenosine triphosphate (ATP)-regulated assisted protein folding. We have analysed the molecular chaperone activity of the cytoplasmic inducible Hsp70 from Trypanosoma cruzi (TcHsp70) and its interactions with its potential partner Hsp40s (T. cruzi DnaJ protein 1 [Tcj1] and T. cruzi DnaJ protein 2 [Tcj2]). Histidine-tagged TcHsp70 (His-TcHsp70), Tcj1 (Tcj1-His) and Tcj2 (His-Tcj2) were over-produced in Escherichia coli and purified by nickel affinity chromatography. The in vitro basal specific ATP hydrolysis activity (ATPase activity) of His-TcHsp70 was determined as 40 nmol phosphate/min/mg protein, significantly higher than that reported for other Hsp70s. The basal specific ATPase activity was stimulated to a maximal level of 60 nmol phosphate/min/mg protein in the presence of His-Tcj2 and a model substrate, reduced carboxymethylated α-lactalbumin. In vivo complementation assays showed that Tcj2 was able to overcome the temperature sensitivity of the ydj1 mutant Saccharomyces cerevisiae strain JJ160, suggesting that Tcj2 may be functionally equivalent to the yeast Hsp40 homologue (yeast DnaJ protein 1, Ydj1). These data suggest that Tcj2 is involved in cytoprotection in a similar fashion to Ydj1, and that TcHsp70 and Tcj2 may interact in a nucleotide-regulated process of chaperone-assisted protein folding.
- Full Text:
- Date Issued: 2004
- Authors: Edkins, Adrienne L , Ludewig, M H , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6465 , http://hdl.handle.net/10962/d1005794 , http://dx.doi.org/10.1016/j.biocel.2004.01.016
- Description: The process of assisted protein folding, characteristic of members of the heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) molecular chaperone families, is important for maintaining the structural integrity of cellular protein machinery under normal and stressful conditions. Hsp70 and Hsp40 cooperate to bind non-native protein conformations in a process of adenosine triphosphate (ATP)-regulated assisted protein folding. We have analysed the molecular chaperone activity of the cytoplasmic inducible Hsp70 from Trypanosoma cruzi (TcHsp70) and its interactions with its potential partner Hsp40s (T. cruzi DnaJ protein 1 [Tcj1] and T. cruzi DnaJ protein 2 [Tcj2]). Histidine-tagged TcHsp70 (His-TcHsp70), Tcj1 (Tcj1-His) and Tcj2 (His-Tcj2) were over-produced in Escherichia coli and purified by nickel affinity chromatography. The in vitro basal specific ATP hydrolysis activity (ATPase activity) of His-TcHsp70 was determined as 40 nmol phosphate/min/mg protein, significantly higher than that reported for other Hsp70s. The basal specific ATPase activity was stimulated to a maximal level of 60 nmol phosphate/min/mg protein in the presence of His-Tcj2 and a model substrate, reduced carboxymethylated α-lactalbumin. In vivo complementation assays showed that Tcj2 was able to overcome the temperature sensitivity of the ydj1 mutant Saccharomyces cerevisiae strain JJ160, suggesting that Tcj2 may be functionally equivalent to the yeast Hsp40 homologue (yeast DnaJ protein 1, Ydj1). These data suggest that Tcj2 is involved in cytoprotection in a similar fashion to Ydj1, and that TcHsp70 and Tcj2 may interact in a nucleotide-regulated process of chaperone-assisted protein folding.
- Full Text:
- Date Issued: 2004
Assessment of potential anti-cancer stem cell activity of marine algal compounds using an in vitro mammosphere assay:
- de la Mare, Jo-Anne, Sterrenberg, Jason N, Sukhthankar, Mugdha G, Chiwakata, Maynard T, Beukes, Denzil R, Blatch, Gregory L, Edkins, Adrienne L
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
- Authors: de la Mare, Jo-Anne , Sterrenberg, Jason N , Sukhthankar, Mugdha G , Chiwakata, Maynard T , Beukes, Denzil R , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165184 , vital:41216 , DOI: 10.1186/1475-2867-13-39
- Description: The cancer stem cell (CSC) theory proposes that tumours arise from and are sustained by a subpopulation of cells with both cancer and stem cell properties. One of the key hallmarks of CSCs is the ability to grow anchorage-independently under serum-free culture conditions resulting in the formation of tumourspheres. It has further been reported that these cells are resistant to traditional chemotherapeutic agents.
- Full Text:
- Date Issued: 2013
Cancer stem cells in breast cancer and metastasis:
- Lawson, Jessica C, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Lawson, Jessica C , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165057 , vital:41205 , DOI: 10.1007/s10549-009-0524-9
- Description: The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.
- Full Text:
- Date Issued: 2009
- Authors: Lawson, Jessica C , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2009
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165057 , vital:41205 , DOI: 10.1007/s10549-009-0524-9
- Description: The cancer stem cell theory poses that cancers develop from a subset of malignant cells that possess stem cell characteristics and has been proposed to account for the development of a variety of malignancies, including breast cancer. These cancer stem cells (CSC) possess characteristics of both stem cells and cancer cells, in that they have the properties of self-renewal, asymmetric cell division, resistance to apoptosis, independent growth, tumourigenicity and metastatic potential. A CSC origin for breast cancer can neatly explain both the heterogeneity of breast cancers and the relapse of the tumours after treatment. However, many reports on CSC in the breast are contradictory. There is variation with respect to how breast cancer stem cells should be identified, their characteristics and a possible lack of correlation between clinical outcome and breast cancer stem cell status of a tumour. These combined factors have made breast cancer stem cells a highly contentious issue. In this review, we highlight the progress in the analysis of cancer stem cells, with an emphasis on breast cancer.
- Full Text:
- Date Issued: 2009
Cytosolic and ER J-domains of mammalian and parasitic origin can functionally interact with DnaK
- Nicoll, W S, Botha, M, McNamara, Caryn, Schlange, M, Pesce, E R, Boshoff, Aileen, Ludewig, M H, Zimmerman, R, Cheetham, M E, Chapple, J P, Blatch, Gregory L
- Authors: Nicoll, W S , Botha, M , McNamara, Caryn , Schlange, M , Pesce, E R , Boshoff, Aileen , Ludewig, M H , Zimmerman, R , Cheetham, M E , Chapple, J P , Blatch, Gregory L
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6484 , http://hdl.handle.net/10962/d1006261 , http://www.sciencedirect.com/science/article/pii/S1357272506003268
- Description: Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I-IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
- Full Text:
- Date Issued: 2007
- Authors: Nicoll, W S , Botha, M , McNamara, Caryn , Schlange, M , Pesce, E R , Boshoff, Aileen , Ludewig, M H , Zimmerman, R , Cheetham, M E , Chapple, J P , Blatch, Gregory L
- Date: 2007
- Language: English
- Type: Article
- Identifier: vital:6484 , http://hdl.handle.net/10962/d1006261 , http://www.sciencedirect.com/science/article/pii/S1357272506003268
- Description: Both prokaryotic and eukaryotic cells contain multiple heat shock protein 40 (Hsp40) and heat shock protein 70 (Hsp70) proteins, which cooperate as molecular chaperones to ensure fidelity at all stages of protein biogenesis. The Hsp40 signature domain, the J-domain, is required for binding of an Hsp40 to a partner Hsp70, and may also play a role in the specificity of the association. Through the creation of chimeric Hsp40 proteins by the replacement of the J-domain of a prokaryotic Hsp40 (DnaJ), we have tested the functional equivalence of J-domains from a number of divergent Hsp40s of mammalian and parasitic origin (malarial Pfj1 and Pfj4, trypanosomal Tcj3, human ERj3, ERj5, and Hsj1, and murine ERj1). An in vivo functional assay was used to test the functionality of the chimeric proteins on the basis of their ability to reverse the thermosensitivity of a dnaJ cbpA mutant Escherichia coli strain (OD259). The Hsp40 chimeras containing J-domains originating from soluble (cytosolic or endoplasmic reticulum (ER)-lumenal) Hsp40s were able to reverse the thermosensitivity of E. coli OD259. In all cases, modified derivatives of these chimeric proteins containing an His to Gln substitution in the HPD motif of the J-domain were unable to reverse the thermosensitivity of E. coli OD259. This suggested that these J-domains exerted their in vivo functionality through a specific interaction with E. coli Hsp70, DnaK. Interestingly, a Hsp40 chimera containing the J-domain of ERj1, an integral membrane-bound ER Hsp40, was unable to reverse the thermosensitivity of E. coli OD259, suggesting that this J-domain was unable to functionally interact with DnaK. Substitutions of conserved amino acid residues and motifs were made in all four helices (I-IV) and the loop regions of the J-domains, and the modified chimeric Hsp40s were tested for functionality using the in vivo assay. Substitution of a highly conserved basic residue in helix II of the J-domain was found to disrupt in vivo functionality for all the J-domains tested. We propose that helix II and the HPD motif of the J-domain represent the fundamental elements of a binding surface required for the interaction of Hsp40s with Hsp70s, and that this surface has been conserved in mammalian, parasitic and bacterial systems.
- Full Text:
- Date Issued: 2007
Exploring DOXP-reductoisomerase binding limits using phosphonated N-aryl and N-heteroarylcarboxamides as DXR inhibitors
- Bodill, Taryn, Conibear, Anne C, Mutorwa, Marius K, Goble, Jessica L, Blatch, Gregory L, Lobb, Kevin A, Klein, Rosalyn, Kaye, Perry T
- Authors: Bodill, Taryn , Conibear, Anne C , Mutorwa, Marius K , Goble, Jessica L , Blatch, Gregory L , Lobb, Kevin A , Klein, Rosalyn , Kaye, Perry T
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448912 , vital:74770 , xlink:href=""
- Description: DOXP-reductoisomerase (DXR) is a validated target for the development of antimalarial drugs to address the increase in resistant strains of Plasmodium falciparum. Series of aryl- and heteroarylcarbamoylphosphonic acids, their diethyl esters and disodium salts have been prepared as analogues of the potent DXR inhibitor fosmidomycin. The effects of the carboxamide N-substituents and the length of the methylene linker have been explored using in silico docking studies, saturation transfer difference NMR spectroscopy and enzyme inhibition assays using both EcDXR and PfDXR. These studies indicate an optimal linker length of two methylene units and have confirmed the importance of an additional binding pocket in the PfDXR active site. Insights into the constraints of the PfDXR binding site provide additional scope for the rational design of DXR inhibitors with increased ligand–receptor interactions.
- Full Text:
- Date Issued: 2013
- Authors: Bodill, Taryn , Conibear, Anne C , Mutorwa, Marius K , Goble, Jessica L , Blatch, Gregory L , Lobb, Kevin A , Klein, Rosalyn , Kaye, Perry T
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/448912 , vital:74770 , xlink:href=""
- Description: DOXP-reductoisomerase (DXR) is a validated target for the development of antimalarial drugs to address the increase in resistant strains of Plasmodium falciparum. Series of aryl- and heteroarylcarbamoylphosphonic acids, their diethyl esters and disodium salts have been prepared as analogues of the potent DXR inhibitor fosmidomycin. The effects of the carboxamide N-substituents and the length of the methylene linker have been explored using in silico docking studies, saturation transfer difference NMR spectroscopy and enzyme inhibition assays using both EcDXR and PfDXR. These studies indicate an optimal linker length of two methylene units and have confirmed the importance of an additional binding pocket in the PfDXR active site. Insights into the constraints of the PfDXR binding site provide additional scope for the rational design of DXR inhibitors with increased ligand–receptor interactions.
- Full Text:
- Date Issued: 2013
Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective
- Edkins, Adrienne L, Price, John T, Pockley, A Graham, Blatch, Gregory L
- Authors: Edkins, Adrienne L , Price, John T , Pockley, A Graham , Blatch, Gregory L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164332 , vital:41109 , DOI: 10.1098/rstb.2016.0521
- Description: Many heat shock proteins (HSPs) are essential to survival as a consequence of their role as molecular chaperones, and play a critical role in maintaining cellular proteostasis by integrating the fundamental processes of protein folding and degradation. HSPs are arguably among the most prominent classes of proteins that have been broadly linked to many human disorders, with changes in their expression profile and/or intracellular/extracellular location now being described as contributing to the pathogenesis of a number of different diseases. Although the concept was initially controversial, it is now widely accepted that HSPs have additional biological functions over and above their role in proteostasis (so-called ‘protein moonlighting’).
- Full Text:
- Date Issued: 2017
- Authors: Edkins, Adrienne L , Price, John T , Pockley, A Graham , Blatch, Gregory L
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/164332 , vital:41109 , DOI: 10.1098/rstb.2016.0521
- Description: Many heat shock proteins (HSPs) are essential to survival as a consequence of their role as molecular chaperones, and play a critical role in maintaining cellular proteostasis by integrating the fundamental processes of protein folding and degradation. HSPs are arguably among the most prominent classes of proteins that have been broadly linked to many human disorders, with changes in their expression profile and/or intracellular/extracellular location now being described as contributing to the pathogenesis of a number of different diseases. Although the concept was initially controversial, it is now widely accepted that HSPs have additional biological functions over and above their role in proteostasis (so-called ‘protein moonlighting’).
- Full Text:
- Date Issued: 2017
HOP expression is regulated by p53 and RAS and characteristic of a cancer gene signature
- Mattison, Stacey A, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Mattison, Stacey A , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66278 , vital:28928 , https://doi.org/10.1007/s12192-016-0755-8
- Description: publisher version , The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.
- Full Text: false
- Date Issued: 2018
- Authors: Mattison, Stacey A , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66278 , vital:28928 , https://doi.org/10.1007/s12192-016-0755-8
- Description: publisher version , The Hsp70/Hsp90 organising protein (HOP) is a co-chaperone essential for client protein transfer from Hsp70 to Hsp90 within the Hsp90 chaperone machine. Although HOP is upregulated in various cancers, there is limited information from in vitro studies on how HOP expression is regulated in cancer. The main objective of this study was to identify the HOP promoter and investigate its activity in cancerous cells. Bioinformatic analysis of the -2500 to +16 bp region of the HOP gene identified a large CpG island and a range of putative cis-elements. Many of the cis-elements were potentially bound by transcription factors which are activated by oncogenic pathways. Luciferase reporter assays demonstrated that the upstream region of the HOP gene contains an active promoter in vitro. Truncation of this region suggested that the core HOP promoter region was -855 to +16 bp. HOP promoter activity was highest in Hs578T, HEK293T and SV40- transformed MEF1 cell lines which expressed mutant or inactive p53. In a mutant p53 background, expression of wild-type p53 led to a reduction in promoter activity, while inhibition of wild-type p53 in HeLa cells increased HOP promoter activity. Additionally, in Hs578T and HEK293T cell lines containing inactive p53, expression of HRAS increased HOP promoter activity. However, HRAS activation of the HOP promoter was inhibited by p53 overexpression. These findings suggest for the first time that HOP expression in cancer may be regulated by both RAS activation and p53 inhibition. Taken together, these data suggest that HOP may be part of the cancer gene signature induced by a combination of mutant p53 and mutated RAS that is associated with cellular transformation.
- Full Text: false
- Date Issued: 2018
Hsp40 Co-chaperones as drug targets: towards the development of specific inhibitors
- Pesce, Eva-Rachele, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Pesce, Eva-Rachele , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66335 , vital:28937 , https://doi.org/10.1007/7355_2015_92
- Description: publisher version , The heat shock protein 40 (Hsp40/DNAJ) family of co-chaperones modulates the activity of the major molecular chaperone heat shock protein 70 (Hsp70) protein group. Hsp40 stimulates the basal ATPase activity of Hsp70 and hence regulates the affinity of Hsp70 for substrate proteins. The number of Hsp40 genes in most organisms is substantially greater than the number of Hsp70 genes. Therefore, different Hsp40 family members may regulate different activities of the same Hsp70. This fact, along with increasing knowledge of the function of Hsp40 in diseases, has led to certain Hsp40 isoforms being considered promising drug targets. Here we review the role of Hsp40 in human disease and recent developments towards the creation of Hsp40-specific inhibitors.
- Full Text: false
- Date Issued: 2016
- Authors: Pesce, Eva-Rachele , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66335 , vital:28937 , https://doi.org/10.1007/7355_2015_92
- Description: publisher version , The heat shock protein 40 (Hsp40/DNAJ) family of co-chaperones modulates the activity of the major molecular chaperone heat shock protein 70 (Hsp70) protein group. Hsp40 stimulates the basal ATPase activity of Hsp70 and hence regulates the affinity of Hsp70 for substrate proteins. The number of Hsp40 genes in most organisms is substantially greater than the number of Hsp70 genes. Therefore, different Hsp40 family members may regulate different activities of the same Hsp70. This fact, along with increasing knowledge of the function of Hsp40 in diseases, has led to certain Hsp40 isoforms being considered promising drug targets. Here we review the role of Hsp40 in human disease and recent developments towards the creation of Hsp40-specific inhibitors.
- Full Text: false
- Date Issued: 2016
Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins
- Baindur-Hudson, Swati, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Baindur-Hudson, Swati , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2015
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/164852 , vital:41178 , ISBN 978-3-319-11730-0 , DOI: 10.1007/978-3-319-11731-7_3
- Description: The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrPC.
- Full Text:
- Date Issued: 2015
- Authors: Baindur-Hudson, Swati , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2015
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/164852 , vital:41178 , ISBN 978-3-319-11730-0 , DOI: 10.1007/978-3-319-11731-7_3
- Description: The Hsp70/Hsp90 organising protein (Hop), also known as stress-inducible protein 1 (STI1), has received considerable attention for diverse cellular functions in both healthy and diseased states. There is extensive evidence that intracellular Hop is a co-chaperone of the major chaperones Hsp70 and Hsp90, playing an important role in the productive folding of Hsp90 client proteins. Consequently, Hop is implicated in a number of key signalling pathways, including aberrant pathways leading to cancer. However, Hop is also secreted and it is now well established that Hop also serves as a receptor for the prion protein, PrPC.
- Full Text:
- Date Issued: 2015
Hsp90α/β associates with the GSK3β/axin1/phospho-β-catenin complex in the human MCF-7 epithelial breast cancer model:
- Cooper, Leanne C, Prinsloo, Earl, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Cooper, Leanne C , Prinsloo, Earl , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165096 , vital:41208 , DOI: 10.1016/j.bbrc.2011.08.136
- Description: Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.
- Full Text:
- Date Issued: 2011
- Authors: Cooper, Leanne C , Prinsloo, Earl , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165096 , vital:41208 , DOI: 10.1016/j.bbrc.2011.08.136
- Description: Hsp90α/β, the signal transduction chaperone, maintains intracellular communication in normal, stem, and cancer cells. The well characterised association of Hsp90α/β with its client kinases form the framework of multiple signalling networks. GSK3β, a known Hsp90α/β client, mediates β-catenin phosphorylation as part of a cytoplasmic destruction complex which targets phospho-β-catenin to the 26S proteasome. The canonical Wnt/β-catenin pathway promotes stem cell self-renewal as well as oncogenesis. The degree of Hsp90α/β involvement in Wnt/β-catenin signalling needs clarification. Here, we describe the association of Hsp90α/β with GSK3β, β-catenin, phospho-β-catenin and the molecular scaffold, axin1, in the human MCF-7 epithelial breast cancer cell model using selective inhibition of Hsp90α/β, confocal laser scanning microscopy and immunoprecipitation. Our findings suggest that Hsp90α/β modulates the phosphorylation of β-catenin by interaction in common complex with GSK3β/axin1/β-catenin.
- Full Text:
- Date Issued: 2011
Human DNAJ in cancer and stem cells:
- Sterrenberg, Jason N, Edkins, Adrienne L, Blatch, Gregory L
- Authors: Sterrenberg, Jason N , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165118 , vital:41210 , DOI: 10.1016/j.canlet.2011.08.019
- Description: The heat shock protein 40 kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
- Full Text:
- Date Issued: 2011
- Authors: Sterrenberg, Jason N , Edkins, Adrienne L , Blatch, Gregory L
- Date: 2011
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165118 , vital:41210 , DOI: 10.1016/j.canlet.2011.08.019
- Description: The heat shock protein 40 kDa (HSP40/DNAJ) co-chaperones constitute the largest and most diverse sub-group of the heat shock protein (HSP) family. DNAJ are widely accepted as regulators of HSP70 function, but also have roles as co-chaperones for the HSP90 chaperone machine, and a growing number of biological functions that may be independent of either of these chaperones. The DNAJ proteins are differentially expressed in human tissues and demonstrate the capacity to function to both promote and suppress cancer development by acting as chaperones for tumour suppressors or oncoproteins. We review the current literature on the function and expression of DNAJ in cancer, stem cells and cancer stem cells. Combining data from gene expression, proteomics and studies in other systems, we propose that DNAJ will be key regulators of cancer, stem cell and possibly cancer stem cell function. The diversity of DNAJ and their assorted roles in a range of biological functions means that selected DNAJ, provided there is limited redundancy and that a specific link to malignancy can be established, may yet provide an attractive target for specific and selective drug design for the development of anti-cancer treatments.
- Full Text:
- Date Issued: 2011
Isolation of genes encoding heat shock protein 70 (hsp70s) from the coelacanth, Latimeria chalumnae
- Modisakeng, Keoagile W, Dorrington, Rosemary A, Blatch, Gregory L
- Authors: Modisakeng, Keoagile W , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6459 , http://hdl.handle.net/10962/d1005788
- Description: Under stress conditions, proteins unfold or misfold, leading to the formation of aggregates. Molecular chaperones can be defined as proteins that facilitate the correct folding of other proteins, so that they attain a stable tertiary structure. In addition, they promote the refolding and degradation of denatured proteins after cellular stress. Heat shock proteins form one of the main classes of molecular chaperones. We are interested in determining if the genome of the coelacanth (Latimeria chalumnae) encodes a heat shock protein-based cytoprotection mechanism. We have isolated 50 kb and larger coelacanth genomic DNA from frozen skin tissue of L. chalumnae. From the alignments of several fish Hsp70 proteins, conserved regions at the N- and C-termini were identified. Codon usage tables were constructed from published coelacanth genes and degenerate primers were designed to isolate the full-length hsp70 gene and regions encoding the ATPase and the peptide binding domains. Since it is known that the tilapia and Fugu inducible hsp70 genes are intronless, we proceeded on the assumption that a coelacanth inducible hsp70 would also be intronless. A large fragment (1840 bp) encoding most of a coelacanth Hsp70 protein, and two partial fragments encoding a coelacanth Hsp70ATPase domain (1048 bp) and peptide binding domain (873 bp), were isolated by polymerase chain reaction amplification. Protein sequences translated from all the nucleotide sequences were closely identical to typical Hsp70s. This is the first study to provide evidence for a cytoprotection mechanism in the coelacanth involving an inducible Hsp70.
- Full Text:
- Date Issued: 2004
- Authors: Modisakeng, Keoagile W , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6459 , http://hdl.handle.net/10962/d1005788
- Description: Under stress conditions, proteins unfold or misfold, leading to the formation of aggregates. Molecular chaperones can be defined as proteins that facilitate the correct folding of other proteins, so that they attain a stable tertiary structure. In addition, they promote the refolding and degradation of denatured proteins after cellular stress. Heat shock proteins form one of the main classes of molecular chaperones. We are interested in determining if the genome of the coelacanth (Latimeria chalumnae) encodes a heat shock protein-based cytoprotection mechanism. We have isolated 50 kb and larger coelacanth genomic DNA from frozen skin tissue of L. chalumnae. From the alignments of several fish Hsp70 proteins, conserved regions at the N- and C-termini were identified. Codon usage tables were constructed from published coelacanth genes and degenerate primers were designed to isolate the full-length hsp70 gene and regions encoding the ATPase and the peptide binding domains. Since it is known that the tilapia and Fugu inducible hsp70 genes are intronless, we proceeded on the assumption that a coelacanth inducible hsp70 would also be intronless. A large fragment (1840 bp) encoding most of a coelacanth Hsp70 protein, and two partial fragments encoding a coelacanth Hsp70ATPase domain (1048 bp) and peptide binding domain (873 bp), were isolated by polymerase chain reaction amplification. Protein sequences translated from all the nucleotide sequences were closely identical to typical Hsp70s. This is the first study to provide evidence for a cytoprotection mechanism in the coelacanth involving an inducible Hsp70.
- Full Text:
- Date Issued: 2004
Knockdown of Hop downregulates RhoC expression, and decreases pseudopodia formation and migration in cancer cell lines:
- Willmer, Tarryn, Contu, Lara, Blatch, Gregory L, Edkins, Adrienne L
- Authors: Willmer, Tarryn , Contu, Lara , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165196 , vital:41217 , DOI: 10.1016/j.canlet.2012.09.021
- Description: The Hsp90/Hsp70 organising protein (Hop) is a co-chaperone that mediates the interaction of Hsp90 and Hsp70 molecular chaperones during assembly of Hsp90 complexes in cells. Formation of Hsp90 complexes is a key intermediate step in the maturation and homeostasis of oncoproteins and several hormone receptors. In this paper, we demonstrate that knockdown of Hop decreased migration of Hs578T and MDA-MB-231 breast cancer cells. Hop was identified in isolated pseudopodia fractions; it colocalised with actin in lamellipodia, and co-sedimented with purified actin in vitro. Knockdown of Hop caused a decrease in the level of RhoC GTPase, and significantly inhibited pseudopodia formation in Hs578T cells. Our data suggest that Hop regulates directional cell migration by multiple unknown mechanisms.
- Full Text:
- Date Issued: 2013
- Authors: Willmer, Tarryn , Contu, Lara , Blatch, Gregory L , Edkins, Adrienne L
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165196 , vital:41217 , DOI: 10.1016/j.canlet.2012.09.021
- Description: The Hsp90/Hsp70 organising protein (Hop) is a co-chaperone that mediates the interaction of Hsp90 and Hsp70 molecular chaperones during assembly of Hsp90 complexes in cells. Formation of Hsp90 complexes is a key intermediate step in the maturation and homeostasis of oncoproteins and several hormone receptors. In this paper, we demonstrate that knockdown of Hop decreased migration of Hs578T and MDA-MB-231 breast cancer cells. Hop was identified in isolated pseudopodia fractions; it colocalised with actin in lamellipodia, and co-sedimented with purified actin in vitro. Knockdown of Hop caused a decrease in the level of RhoC GTPase, and significantly inhibited pseudopodia formation in Hs578T cells. Our data suggest that Hop regulates directional cell migration by multiple unknown mechanisms.
- Full Text:
- Date Issued: 2013
Molecular biology studies on the coelacanth: a review
- Modisakeng, Keoagile W, Amemiya, Chris T, Dorrington, Rosemary A, Blatch, Gregory L
- Authors: Modisakeng, Keoagile W , Amemiya, Chris T , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6466 , http://hdl.handle.net/10962/d1005795
- Description: The discovery of the African coelacanth in 1938 and subsequently the Indonesian coelacanth in 1998 has resulted in a keen interest in molecular studies on the coelacanth. A major focus has been on the phylogenetic position of the coelacanth. Lobe-finned fish such as the coelacanth are thought to be at the base of the evolutionary branch of fish leading to tetrapods. These studies have further aimed to resolve the phylogenetic relationship of extant lobe-finned fish (two coelacanth species and the lungfishes) to vertebrates. Notwithstanding the lack of readily accessible good-quality coelacanth tissue, several major contributions to coelacanth molecular studies and biology have been possible. The mitochondrial genome sequences of both species of the coelacanth suggest that they diverged from one another 40–30 million years ago. A number of large gene families such as the HOX, protocadherin and heat shock protein clusters have been characterized. Furthermore, the recent successful construction of a large-insert (150–200 kilobase) genomic library of the Indonesian coelacanth will prove to be an invaluable tool in both comparative and functional genomics. Here we summarize and evaluate the current status of molecular research, published and databased, for both the African (Latimeria chalumnae) and the Indonesian (Latimeria menadoensis) coelacanth.
- Full Text:
- Date Issued: 2006
- Authors: Modisakeng, Keoagile W , Amemiya, Chris T , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6466 , http://hdl.handle.net/10962/d1005795
- Description: The discovery of the African coelacanth in 1938 and subsequently the Indonesian coelacanth in 1998 has resulted in a keen interest in molecular studies on the coelacanth. A major focus has been on the phylogenetic position of the coelacanth. Lobe-finned fish such as the coelacanth are thought to be at the base of the evolutionary branch of fish leading to tetrapods. These studies have further aimed to resolve the phylogenetic relationship of extant lobe-finned fish (two coelacanth species and the lungfishes) to vertebrates. Notwithstanding the lack of readily accessible good-quality coelacanth tissue, several major contributions to coelacanth molecular studies and biology have been possible. The mitochondrial genome sequences of both species of the coelacanth suggest that they diverged from one another 40–30 million years ago. A number of large gene families such as the HOX, protocadherin and heat shock protein clusters have been characterized. Furthermore, the recent successful construction of a large-insert (150–200 kilobase) genomic library of the Indonesian coelacanth will prove to be an invaluable tool in both comparative and functional genomics. Here we summarize and evaluate the current status of molecular research, published and databased, for both the African (Latimeria chalumnae) and the Indonesian (Latimeria menadoensis) coelacanth.
- Full Text:
- Date Issued: 2006
Molecular chaperones in biology, medicine and protein biotechnology
- Boshoff, Aileen, Nicoll, William S, Hennessy, Fritha, Ludewig, M H, Daniel, Sheril, Modisakeng, Keoagile W, Shonhai, Addmore, McNamara, Caryn, Bradley, Graeme, Blatch, Gregory L
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
Not all J domains are created equal: implications for the specificity of Hsp40-Hsp70 interactions
- Hennessy, Fritha, Nicoll, Willam S, Zimmerman, Richard, Cheetham, Michael E, Blatch, Gregory L
- Authors: Hennessy, Fritha , Nicoll, Willam S , Zimmerman, Richard , Cheetham, Michael E , Blatch, Gregory L
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6487 , http://hdl.handle.net/10962/d1006270 , http://dx.doi.org/10.1110/ps.051406805
- Description: Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
- Full Text:
- Date Issued: 2005
- Authors: Hennessy, Fritha , Nicoll, Willam S , Zimmerman, Richard , Cheetham, Michael E , Blatch, Gregory L
- Date: 2005
- Language: English
- Type: Article
- Identifier: vital:6487 , http://hdl.handle.net/10962/d1006270 , http://dx.doi.org/10.1110/ps.051406805
- Description: Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.
- Full Text:
- Date Issued: 2005
Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases
- Longshaw, Victoria M, Chapple, J Paul, Cheetham, Michael E, Blatch, Gregory L
- Authors: Longshaw, Victoria M , Chapple, J Paul , Cheetham, Michael E , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6488 , http://hdl.handle.net/10962/d1006271 , https://dx.doi.org/10.1242/jcs.00905
- Description: The co-chaperone murine stress-inducible protein 1 (mSTI1), an Hsp70/Hsp90 organizing protein (Hop) homologue, mediates the assembly of the Hsp70/Hsp90 chaperone heterocomplex. The mSTI1 protein can be phosphorylated in vitro by cell cycle kinases proximal to a putative nuclear localization signal (NLS), which substantiated a predicted casein kinase II (CKII)-cdc2 kinase-NLS (CcN) motif at position 180-239 and suggested that mSTI1 might move between the cytoplasm and the nucleus under certain cell cycle conditions. The mechanism responsible for the cellular localization of mSTI1 was probed using NIH3T3 fibroblasts to investigate the localization of endogenous mSTI1 and enhanced green fluorescent protein (EGFP)-tagged mSTI1 mutants. Localization studies on cell lines stably expressing NLS(mSTI1)-EGFP and EGFP demonstrated that the NLS(mSTI1) was able to promote a nuclear localization of EGFP. The mSTI1 protein was exclusively cytoplasmic in most cells under normal conditions but was present in the nucleus of a subpopulation of cells and accumulated in the nucleus following inhibition of nuclear export (leptomycin B treatment). G1/S-phase arrest (using hydroxyurea) and inhibition of cdc2 kinase (using olomoucine) but not inhibition of casein kinase II (using 5,6-dichlorobenzimidazole riboside), increased the proportion of cells with endogenous mSTI1 nuclear staining. mSTI1-EGFP behaved identically to endogenous mSTI1. The functional importance of key residues was tested using modified mSTI1-EGFP proteins. Inactivation and phosphorylation mimicking of potential phosphorylation sites in mSTI1 altered the nuclear translocation. Mimicking of phosphorylation at the mSTI1 CKII phosphorylation site (S189E) promoted nuclear localization of mSTI1-EGFP. Mimicking phosphorylation at the cdc2 kinase phosphorylation site (T198E) promoted cytoplasmic localization of mSTI1-EGFP at the G1/S-phase transition,whereas removal of this site (T198A) promoted the nuclear localization of mSTI1-EGFP under the same conditions. These data provide the first evidence of nuclear import and export of a major Hsp70/Hsp90 co-chaperone and the regulation of this nuclear-cytoplasmic shuttling by cell cycle status and cell cycle kinases.
- Full Text:
- Date Issued: 2004
Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases
- Authors: Longshaw, Victoria M , Chapple, J Paul , Cheetham, Michael E , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6488 , http://hdl.handle.net/10962/d1006271 , https://dx.doi.org/10.1242/jcs.00905
- Description: The co-chaperone murine stress-inducible protein 1 (mSTI1), an Hsp70/Hsp90 organizing protein (Hop) homologue, mediates the assembly of the Hsp70/Hsp90 chaperone heterocomplex. The mSTI1 protein can be phosphorylated in vitro by cell cycle kinases proximal to a putative nuclear localization signal (NLS), which substantiated a predicted casein kinase II (CKII)-cdc2 kinase-NLS (CcN) motif at position 180-239 and suggested that mSTI1 might move between the cytoplasm and the nucleus under certain cell cycle conditions. The mechanism responsible for the cellular localization of mSTI1 was probed using NIH3T3 fibroblasts to investigate the localization of endogenous mSTI1 and enhanced green fluorescent protein (EGFP)-tagged mSTI1 mutants. Localization studies on cell lines stably expressing NLS(mSTI1)-EGFP and EGFP demonstrated that the NLS(mSTI1) was able to promote a nuclear localization of EGFP. The mSTI1 protein was exclusively cytoplasmic in most cells under normal conditions but was present in the nucleus of a subpopulation of cells and accumulated in the nucleus following inhibition of nuclear export (leptomycin B treatment). G1/S-phase arrest (using hydroxyurea) and inhibition of cdc2 kinase (using olomoucine) but not inhibition of casein kinase II (using 5,6-dichlorobenzimidazole riboside), increased the proportion of cells with endogenous mSTI1 nuclear staining. mSTI1-EGFP behaved identically to endogenous mSTI1. The functional importance of key residues was tested using modified mSTI1-EGFP proteins. Inactivation and phosphorylation mimicking of potential phosphorylation sites in mSTI1 altered the nuclear translocation. Mimicking of phosphorylation at the mSTI1 CKII phosphorylation site (S189E) promoted nuclear localization of mSTI1-EGFP. Mimicking phosphorylation at the cdc2 kinase phosphorylation site (T198E) promoted cytoplasmic localization of mSTI1-EGFP at the G1/S-phase transition,whereas removal of this site (T198A) promoted the nuclear localization of mSTI1-EGFP under the same conditions. These data provide the first evidence of nuclear import and export of a major Hsp70/Hsp90 co-chaperone and the regulation of this nuclear-cytoplasmic shuttling by cell cycle status and cell cycle kinases.
- Full Text:
- Date Issued: 2004
Nuclear translocation of the phosphoprotein Hop (Hsp70/Hsp90 organizing protein) occurs under heat shock, and its proposed nuclear localization signal is involved in Hsp90 binding
- Daniel, Sheril, Bradley, Graeme, Longshaw, Victoria M, Söti, Csaba, Csermely, Peter, Blatch, Gregory L
- Authors: Daniel, Sheril , Bradley, Graeme , Longshaw, Victoria M , Söti, Csaba , Csermely, Peter , Blatch, Gregory L
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:6472 , http://hdl.handle.net/10962/d1005951 , http://dx.doi.org/10.1016/j.bbamcr.2008.01.014
- Description: The Hsp70–Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70–Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop–Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop–Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.
- Full Text:
- Date Issued: 2008
- Authors: Daniel, Sheril , Bradley, Graeme , Longshaw, Victoria M , Söti, Csaba , Csermely, Peter , Blatch, Gregory L
- Date: 2008
- Language: English
- Type: Article
- Identifier: vital:6472 , http://hdl.handle.net/10962/d1005951 , http://dx.doi.org/10.1016/j.bbamcr.2008.01.014
- Description: The Hsp70–Hsp90 complex is implicated in the folding and regulation of numerous signaling proteins, and Hop, the Hsp70–Hsp90 Organizing Protein, facilitates the association of this multichaperone machinery. Phosphatase treatment of mouse cell extracts reduced the number of Hop isoforms compared to untreated extracts, providing the first direct evidence that Hop was phosphorylated in vivo. Furthermore, surface plasmon resonance (SPR) spectroscopy showed that a cdc2 kinase phosphorylation mimic of Hop had reduced affinity for Hsp90 binding. Hop was predominantly cytoplasmic, but translocated to the nucleus in response to heat shock. A putative bipartite nuclear localization signal (NLS) has been identified within the Hsp90-binding domain of Hop. Although substitution of residues within the major arm of this proposed NLS abolished Hop–Hsp90 interaction as determined by SPR, this was not sufficient to prevent the nuclear accumulation of Hop under leptomycin-B treatment and heat shock conditions. These results showed for the first time that the subcellular localization of Hop was stress regulated and that the major arm of the putative NLS was not directly important for nuclear translocation but was critical for Hop–Hsp90 association in vitro. We propose a model in which the association of Hop with Hsp90 and the phosphorylated status of Hop both play a role in the mechanism of nucleo-cytoplasmic shuttling of Hop.
- Full Text:
- Date Issued: 2008
PFB0595w is a Plasmodium falciparum J protein that co-localizes with PfHsp70-1 and can stimulate its in vitro ATP hydrolysis activity
- Njunge, James M, Mandal, Pradipta, Przyborski, Jude M, Boshoff, Aileen, Pesce, Eva-Rachele, Blatch, Gregory L
- Authors: Njunge, James M , Mandal, Pradipta , Przyborski, Jude M , Boshoff, Aileen , Pesce, Eva-Rachele , Blatch, Gregory L
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431739 , vital:72800 , xlink:href="https://doi.org/10.1016/j.biocel.2015.02.008"
- Description: Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
- Full Text:
- Date Issued: 2015
- Authors: Njunge, James M , Mandal, Pradipta , Przyborski, Jude M , Boshoff, Aileen , Pesce, Eva-Rachele , Blatch, Gregory L
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/431739 , vital:72800 , xlink:href="https://doi.org/10.1016/j.biocel.2015.02.008"
- Description: Heat shock proteins, many of which function as molecular chaperones, play important roles in the lifecycle and pathogenesis of the malaria parasite, Plasmodium falciparum. The P. falciparum heat shock protein 70 (PfHsp70) family of chaperones is potentially regulated by a large complement of J proteins that localize to various intracellular compartments including the infected erythrocyte cytosol. While PfHsp70-1 has been shown to be an abundant cytosolic chaperone, its regulation by J proteins is poorly understood. In this study, we characterized the J protein PFB0595w, a homologue of the well-studied yeast cytosolic J protein, Sis1. PFB0595w, similarly to PfHsp70-1, was localized to the parasite cytosol and its expression was upregulated by heat shock. Additionally, recombinant PFB0595w was shown to be dimeric and to stimulate the in vitro ATPase activity of PfHsp70-1. Overall, the expression, localization and biochemical data for PFB0595w suggest that it may function as a cochaperone of PfHsp70-1, and advances current knowledge on the chaperone machinery of the parasite.
- Full Text:
- Date Issued: 2015
Plasmodium falciparum Hep1 is required to prevent the self aggregation of PfHsp70-3
- Nyakundi, David O, Vuko, Loyiso A M, Bentley, Stephen J, Hoppe, Heinrich C, Blatch, Gregory L, Boshoff, Aileen
- Authors: Nyakundi, David O , Vuko, Loyiso A M , Bentley, Stephen J , Hoppe, Heinrich C , Blatch, Gregory L , Boshoff, Aileen
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66109 , vital:28903 , https://doi.org/10.1371/journal.pone.0156446
- Description: publisher version , The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria. , This work was funded by grants from the National Research Foundation (NRF); grant number 87663 and Deutsche Forschungsgemeinschaft (DFG); grant number LI 402/14-1. D.O.N. is the recipient of academic development and training funds from Mwenge Catholic University, Moshi, Tanzania. S.J.B. is the recipient of an NRF Doctoral Innovation Scholarship.
- Full Text:
- Date Issued: 2016
- Authors: Nyakundi, David O , Vuko, Loyiso A M , Bentley, Stephen J , Hoppe, Heinrich C , Blatch, Gregory L , Boshoff, Aileen
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/66109 , vital:28903 , https://doi.org/10.1371/journal.pone.0156446
- Description: publisher version , The majority of mitochondrial proteins are encoded in the nucleus and need to be imported from the cytosol into the mitochondria, and molecular chaperones play a key role in the efficient translocation and proper folding of these proteins in the matrix. One such molecular chaperone is the eukaryotic mitochondrial heat shock protein 70 (Hsp70); however, it is prone to self-aggregation and requires the presence of an essential zinc-finger protein, Hsp70-escort protein 1 (Hep1), to maintain its structure and function. PfHsp70-3, the only Hsp70 predicted to localize in the mitochondria of P. falciparum, may also rely on a Hep1 orthologue to prevent self-aggregation. In this study, we identified a putative Hep1 orthologue in P. falciparum and co-expression of PfHsp70-3 and PfHep1 enhanced the solubility of PfHsp70-3. PfHep1 suppressed the thermally induced aggregation of PfHsp70-3 but not the aggregation of malate dehydrogenase or citrate synthase, thus showing specificity for PfHsp70-3. Zinc ions were indeed essential for maintaining the function of PfHep1, as EDTA chelation abrogated its abilities to suppress the aggregation of PfHsp70-3. Soluble and functional PfHsp70-3, acquired by co-expression with PfHep-1, will facilitate the biochemical characterisation of this particular Hsp70 protein and its evaluation as a drug target for the treatment of malaria. , This work was funded by grants from the National Research Foundation (NRF); grant number 87663 and Deutsche Forschungsgemeinschaft (DFG); grant number LI 402/14-1. D.O.N. is the recipient of academic development and training funds from Mwenge Catholic University, Moshi, Tanzania. S.J.B. is the recipient of an NRF Doctoral Innovation Scholarship.
- Full Text:
- Date Issued: 2016