Laser bending of commercially pure grade 2 titanium alloy plates: mechanisms analysis and characterisation of mechanical properties
- Authors: Mjali, Kadephi Vuyolwethu
- Date: 2014
- Subjects: Materials -- Mechanical properties , Bending , Titanium-aluminum alloys
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:9642 , http://hdl.handle.net/10948/d1021147
- Description: The processing of materials has become a specialist field and the industry will continue to grow due to rising costs in labour and raw materials which has forced many automotive industry suppliers to invest heavily in this field. In order to be relevant and competitive in today’s industrial world, companies in South Africa are now forced to dedicate billions of rands in profits to research and development. Metals like titanium are finding favour with automotive and aviation companies in pursuit of savings in fuel consumption. This saving is achieved by reducing weight on aircraft and automobiles yet still meeting acceptable and improved structural integrity. In-depth research into the behaviour of various materials under varying loading conditions is therefore essential. The study on the processing of commercially pure grade 2 titanium alloy plates focuses on the development of process parameters for bending the material using a 4kW Nd: YAG laser to an approximate radius of curvature of 120mm. The resulting mechanical properties of laser formed plates are then compared to those obtained from mechanically formed samples. The titanium parent material was used to benchmark the performance of formed samples. The effect of process parameters on the mechanical properties and structural integrity also formed part of this study. To obtain the bending parameters for laser forming, various combinations of processing speeds and laser powers were used. The line energy is dependent on the power and scanning velocity parameters and these are shown in table 1. The laser power, line energy and scanning velocity were the main parameters controlled in this study and the beam diameter remained unchanged. Residual stress analysis, micro-hardness and fatigue life testing were carried out to analyse mechanical properties and the structural integrity of the plate samples. Microstructural analysis was also done to observe changes in the material as a result of the forming processes. From the results it is evident that laser forming is beneficial to the hardness of titanium but detrimental to the fatigue life at higher line energies. Residual stress analysis showed the amount of stress within the study samples increased with each forming operation. This information was vital in the analysis of the fatigue life of titanium. A fatigue life prediction model was developed from this study and it shed some light on the behaviour of titanium in fatigue testing. The model could be used to predict fatigue life when no fatigue data is available for commercially pure grade 2 titanium alloy plates. In conclusion, this study helped establish parameters that could be used to bend titanium while the analysis of mechanical properties showed the limits of working with this alloy.
- Full Text:
- Date Issued: 2014
- Authors: Mjali, Kadephi Vuyolwethu
- Date: 2014
- Subjects: Materials -- Mechanical properties , Bending , Titanium-aluminum alloys
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:9642 , http://hdl.handle.net/10948/d1021147
- Description: The processing of materials has become a specialist field and the industry will continue to grow due to rising costs in labour and raw materials which has forced many automotive industry suppliers to invest heavily in this field. In order to be relevant and competitive in today’s industrial world, companies in South Africa are now forced to dedicate billions of rands in profits to research and development. Metals like titanium are finding favour with automotive and aviation companies in pursuit of savings in fuel consumption. This saving is achieved by reducing weight on aircraft and automobiles yet still meeting acceptable and improved structural integrity. In-depth research into the behaviour of various materials under varying loading conditions is therefore essential. The study on the processing of commercially pure grade 2 titanium alloy plates focuses on the development of process parameters for bending the material using a 4kW Nd: YAG laser to an approximate radius of curvature of 120mm. The resulting mechanical properties of laser formed plates are then compared to those obtained from mechanically formed samples. The titanium parent material was used to benchmark the performance of formed samples. The effect of process parameters on the mechanical properties and structural integrity also formed part of this study. To obtain the bending parameters for laser forming, various combinations of processing speeds and laser powers were used. The line energy is dependent on the power and scanning velocity parameters and these are shown in table 1. The laser power, line energy and scanning velocity were the main parameters controlled in this study and the beam diameter remained unchanged. Residual stress analysis, micro-hardness and fatigue life testing were carried out to analyse mechanical properties and the structural integrity of the plate samples. Microstructural analysis was also done to observe changes in the material as a result of the forming processes. From the results it is evident that laser forming is beneficial to the hardness of titanium but detrimental to the fatigue life at higher line energies. Residual stress analysis showed the amount of stress within the study samples increased with each forming operation. This information was vital in the analysis of the fatigue life of titanium. A fatigue life prediction model was developed from this study and it shed some light on the behaviour of titanium in fatigue testing. The model could be used to predict fatigue life when no fatigue data is available for commercially pure grade 2 titanium alloy plates. In conclusion, this study helped establish parameters that could be used to bend titanium while the analysis of mechanical properties showed the limits of working with this alloy.
- Full Text:
- Date Issued: 2014
Mechanisms, analysis and characterisation of mechanical properties of laser formed commercially pure grade 2 titanium alloy plates
- Authors: Mjali, Kadephi Vuyolwethu
- Date: 2014
- Subjects: Materials -- Mechanical properties , Bending , Titanium-aluminum alloys
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:9641 , http://hdl.handle.net/10948/d1021083
- Description: The processing of materials has become a specialist field and the industry will continue to grow due to rising costs in labour and raw materials which has forced many automotive industry suppliers to invest heavily in this field. In order to be relevant and competitive in today’s industrial world, companies in South Africa are now forced to dedicate billions of rands in profits to research and development. Metals like titanium are finding favour with automotive and aviation companies in pursuit of savings in fuel consumption. This saving is achieved by reducing weight on aircraft and automobiles yet still meeting acceptable and improved structural integrity. In-depth research into the behaviour of various materials under varying loading conditions is therefore essential. The study on the processing of commercially pure grade 2 titanium alloy plates focuses on the development of process parameters for bending the material using a 4kW Nd: YAG laser to an approximate radius of curvature of 120mm. The resulting mechanical properties of laser formed plates are then compared to those obtained from mechanically formed samples. The titanium parent material was used to benchmark the performance of formed samples. The effect of process parameters on the mechanical properties and structural integrity also formed part of this study. To obtain the bending parameters for laser forming, various combinations of processing speeds and laser powers were used. The line energy is dependent on the power and scanning velocity parameters and these are shown in table 1. The laser power, line energy and scanning velocity were the main parameters controlled in this study and the beam diameter remained unchanged. Residual stress analysis, micro-hardness and fatigue life testing were carried out to analyse mechanical properties and the structural integrity of the plate samples. Microstructural analysis was also done to observe changes in the material as a result of the forming processes. From the results it is evident that laser forming is beneficial to the hardness of titanium but detrimental to the fatigue life at higher line energies. Residual stress analysis showed the amount of stress within the study samples increased with each forming operation. This information was vital in the analysis of the fatigue life of titanium. A fatigue life prediction model was developed from this study and it shed some light on the behaviour of titanium in fatigue testing. The model could be used to predict fatigue life when no fatigue data is available for commercially pure grade 2 titanium alloy plates. In conclusion, this study helped establish parameters that could be used to bend titanium while the analysis of mechanical properties showed the limits of working with this alloy.
- Full Text:
- Date Issued: 2014
- Authors: Mjali, Kadephi Vuyolwethu
- Date: 2014
- Subjects: Materials -- Mechanical properties , Bending , Titanium-aluminum alloys
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:9641 , http://hdl.handle.net/10948/d1021083
- Description: The processing of materials has become a specialist field and the industry will continue to grow due to rising costs in labour and raw materials which has forced many automotive industry suppliers to invest heavily in this field. In order to be relevant and competitive in today’s industrial world, companies in South Africa are now forced to dedicate billions of rands in profits to research and development. Metals like titanium are finding favour with automotive and aviation companies in pursuit of savings in fuel consumption. This saving is achieved by reducing weight on aircraft and automobiles yet still meeting acceptable and improved structural integrity. In-depth research into the behaviour of various materials under varying loading conditions is therefore essential. The study on the processing of commercially pure grade 2 titanium alloy plates focuses on the development of process parameters for bending the material using a 4kW Nd: YAG laser to an approximate radius of curvature of 120mm. The resulting mechanical properties of laser formed plates are then compared to those obtained from mechanically formed samples. The titanium parent material was used to benchmark the performance of formed samples. The effect of process parameters on the mechanical properties and structural integrity also formed part of this study. To obtain the bending parameters for laser forming, various combinations of processing speeds and laser powers were used. The line energy is dependent on the power and scanning velocity parameters and these are shown in table 1. The laser power, line energy and scanning velocity were the main parameters controlled in this study and the beam diameter remained unchanged. Residual stress analysis, micro-hardness and fatigue life testing were carried out to analyse mechanical properties and the structural integrity of the plate samples. Microstructural analysis was also done to observe changes in the material as a result of the forming processes. From the results it is evident that laser forming is beneficial to the hardness of titanium but detrimental to the fatigue life at higher line energies. Residual stress analysis showed the amount of stress within the study samples increased with each forming operation. This information was vital in the analysis of the fatigue life of titanium. A fatigue life prediction model was developed from this study and it shed some light on the behaviour of titanium in fatigue testing. The model could be used to predict fatigue life when no fatigue data is available for commercially pure grade 2 titanium alloy plates. In conclusion, this study helped establish parameters that could be used to bend titanium while the analysis of mechanical properties showed the limits of working with this alloy.
- Full Text:
- Date Issued: 2014
Material characterisation of laser formed dual phase steel components
- Authors: Els-Botes, Annelize
- Date: 2005
- Subjects: Steel -- Fatigue , Bending , Lasers , Sheet-steel -- Effect of lasers on
- Language: English
- Type: Thesis , Doctoral , DTech
- Identifier: vital:9609 , http://hdl.handle.net/10948/176 , Steel -- Fatigue , Bending , Lasers , Sheet-steel -- Effect of lasers on
- Description: The nature and scope of this thesis can be divided into four categories: • FORMING PARAMETERS • Identification of various laser forming parameters in order to produce specimens of similar dimension (radius of curvature). • TEMPERATURE AND MICROSTRUCTURE • To study the effect of maximum temperature reached during the forming operation on the microstructure of the various specimens. • FATIGUE LIFE • Compare the fatigue life of the specimens produced by various laser parameters to that of the original material, and also the fatigue life of mechanical formed specimens. • RESIDUAL STRESS PROFILE Determine if the laser forming process induces detrimental residual stress magnitudes in the specimens. The main objective of this thesis was to gain an understanding of the way in which laser forming affects the fatigue performance and residual stress magnitude / distribution of dual phase steel. Although lasers have been used successfully in various manufacturing processes (welding, cutting, marking, etc.), little information is available on the influence of laser forming on many automotive alloys such as dual phase steel. The first part of the work involved a literature review of the process and factors affecting the laser forming process. It became clear from the literature overview that laser forming of sheet material thicker than 1mm is complex in nature. The variables that can influence the process are complicated and their interaction with each other is not easily controlled. The main parameters that were thus controlled in this study are as follows: • Laser power (P) • Laser head travel speed (v) • Laser beam size (mm) The chapters that follow the literature review, deals with the laser forming process of dual phase steel and the production of fatigue specimens using various laser parameters. It was found that the following laser parameters resulted in specimens with approximately the same radius of curvature: Laser power KW Beam diameter mm Interval spacing % Overlap Scanning velocity m/min Line Energy J/m 5 20 10 50 2,5 2000 3,1 14 10,5 25 2 1550 1,5 7,5 7,5 0 1,2 1250 From the results obtained from fatigue testing specimens produced with the above settings, it is clear that the laser forming process has the potential to be employed as a production stage in the manufacture of wheel centre discs while maintaining adequate fatigue strength. Large beam diameters which cause heat penetration through the thickness of the specimen and hence microstructure breakdown should be avoided, since it was shown that these specimens exhibited impaired mechanical properties than those produced with a smaller laser beam diameter. The microstructural changes observed during the forming process needs to be considered since the mechanical properties of the material changes with a change in microstructure. A dramatic change in microstructure was observed; therefore it is of crucial importance that microstructural evaluation plays an important part in deciding optimum laser parameters for the forming process of ferrous alloys. During residual stress analysis, trends were observed between measurements taken at the same location of the samples; regardless whether measurements were taken on the laser irradiated side or the reverse side of the specimen. The only difference was the magnitude of the relieved residual stress. In most cases the obtained relieved residual stress was much smaller in magnitude than that of the original plate (in the bulk of the material). The surface indicated a slight tensile residual stress for most samples evaluated. A good correlation in distribution profile was obtained between microhardness and relieved residual stress distribution at the ‘middle of sample’ location. This indicates that an increase in hardness indicates an increase in residual stress magnitude for the laser formed specimens. In conclusion, this research has proved that it is possible to deform metal plate of a 3,5mm thickness with a CO2 laser system. The research also established the effect of process parameters on the final product’s shape/bend angle and characterised the effect of the laser forming process on the material’s mechanical properties and structural integrity.
- Full Text:
- Date Issued: 2005
- Authors: Els-Botes, Annelize
- Date: 2005
- Subjects: Steel -- Fatigue , Bending , Lasers , Sheet-steel -- Effect of lasers on
- Language: English
- Type: Thesis , Doctoral , DTech
- Identifier: vital:9609 , http://hdl.handle.net/10948/176 , Steel -- Fatigue , Bending , Lasers , Sheet-steel -- Effect of lasers on
- Description: The nature and scope of this thesis can be divided into four categories: • FORMING PARAMETERS • Identification of various laser forming parameters in order to produce specimens of similar dimension (radius of curvature). • TEMPERATURE AND MICROSTRUCTURE • To study the effect of maximum temperature reached during the forming operation on the microstructure of the various specimens. • FATIGUE LIFE • Compare the fatigue life of the specimens produced by various laser parameters to that of the original material, and also the fatigue life of mechanical formed specimens. • RESIDUAL STRESS PROFILE Determine if the laser forming process induces detrimental residual stress magnitudes in the specimens. The main objective of this thesis was to gain an understanding of the way in which laser forming affects the fatigue performance and residual stress magnitude / distribution of dual phase steel. Although lasers have been used successfully in various manufacturing processes (welding, cutting, marking, etc.), little information is available on the influence of laser forming on many automotive alloys such as dual phase steel. The first part of the work involved a literature review of the process and factors affecting the laser forming process. It became clear from the literature overview that laser forming of sheet material thicker than 1mm is complex in nature. The variables that can influence the process are complicated and their interaction with each other is not easily controlled. The main parameters that were thus controlled in this study are as follows: • Laser power (P) • Laser head travel speed (v) • Laser beam size (mm) The chapters that follow the literature review, deals with the laser forming process of dual phase steel and the production of fatigue specimens using various laser parameters. It was found that the following laser parameters resulted in specimens with approximately the same radius of curvature: Laser power KW Beam diameter mm Interval spacing % Overlap Scanning velocity m/min Line Energy J/m 5 20 10 50 2,5 2000 3,1 14 10,5 25 2 1550 1,5 7,5 7,5 0 1,2 1250 From the results obtained from fatigue testing specimens produced with the above settings, it is clear that the laser forming process has the potential to be employed as a production stage in the manufacture of wheel centre discs while maintaining adequate fatigue strength. Large beam diameters which cause heat penetration through the thickness of the specimen and hence microstructure breakdown should be avoided, since it was shown that these specimens exhibited impaired mechanical properties than those produced with a smaller laser beam diameter. The microstructural changes observed during the forming process needs to be considered since the mechanical properties of the material changes with a change in microstructure. A dramatic change in microstructure was observed; therefore it is of crucial importance that microstructural evaluation plays an important part in deciding optimum laser parameters for the forming process of ferrous alloys. During residual stress analysis, trends were observed between measurements taken at the same location of the samples; regardless whether measurements were taken on the laser irradiated side or the reverse side of the specimen. The only difference was the magnitude of the relieved residual stress. In most cases the obtained relieved residual stress was much smaller in magnitude than that of the original plate (in the bulk of the material). The surface indicated a slight tensile residual stress for most samples evaluated. A good correlation in distribution profile was obtained between microhardness and relieved residual stress distribution at the ‘middle of sample’ location. This indicates that an increase in hardness indicates an increase in residual stress magnitude for the laser formed specimens. In conclusion, this research has proved that it is possible to deform metal plate of a 3,5mm thickness with a CO2 laser system. The research also established the effect of process parameters on the final product’s shape/bend angle and characterised the effect of the laser forming process on the material’s mechanical properties and structural integrity.
- Full Text:
- Date Issued: 2005
- «
- ‹
- 1
- ›
- »