Evaluation of some wastewater treatment facilities in Chris Hani and Amathole district municipalities as potential sources of Escherichia coli in the environment
- Authors: Mazwi, Sinazo Nomathamsanqa
- Date: 2014
- Subjects: Escherichia coli -- South Africa -- Eastern Cape , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11285 , http://hdl.handle.net/10353/d1019804 , Escherichia coli -- South Africa -- Eastern Cape , Water -- Purification
- Description: Access to clean and safe water is essential for the survival of human beings. Pollution of freshwater sources constitutes a major problem hindering access to safe water for drinking and other domestic uses. Wastewater effluent discharges often impact the microbiological qualities of surface waters with its attendant health and environmental problems. This study evaluated the microbiological qualities of the discharged effluents of four selected wastewater treatment plants in Amathole and Chris Hani District Municipalities of the Eastern Cape Province over a twelve-month sampling period. Microbiological analysis (faecal coliform, Escherichia coli and Escherichia coli O157:H7) was done using standard methods and polymerase chain reaction method was used to confirm identities ofbacterial isolates. Presumptive bacteria counts ranged as follows: faecal coliforms 0 to 1.6 × 103 CFU/100 ml, E. coli 0 to 1.4 × 103 CFU/100 ml and E. coli O157:H7 0 to 9.6 × 102 CFU/100 ml. Forty eight percent (305/626) of the presumptive E. coli isolates were confirmed using species-specific uidA gene which code for β-glucuronidase enzyme in E. coli. Antibiotic susceptibility profile of the isolate using a panel of 10 antibiotics shows 100% (150/150) resistance to antibiotics rifampicin and penicillin G while 49.3% (74/150) of the isolates and 46.7% (70/150) were susceptible to streptomycin and cefotaxime respectively. Multiple antibiotic resistance phenotypes (MARP) of the isolates showed resistance to two or more test antibiotics while the calculated multiple antibiotic resistance index (MARI) for the tested isolated is 0.49. The detection of potentially pathogenic E. coli in the final effluents suggestspotential danger to the receiving water bodies where the effluents are discharge. The high MARI valued obtained in this study indicates that the isolates are form environment where the tested antibiotics are being used and may further lead to the spread of multiple antibiotics resistance among other pathogens that may be present in the same environment.
- Full Text:
- Authors: Mazwi, Sinazo Nomathamsanqa
- Date: 2014
- Subjects: Escherichia coli -- South Africa -- Eastern Cape , Water -- Purification
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11285 , http://hdl.handle.net/10353/d1019804 , Escherichia coli -- South Africa -- Eastern Cape , Water -- Purification
- Description: Access to clean and safe water is essential for the survival of human beings. Pollution of freshwater sources constitutes a major problem hindering access to safe water for drinking and other domestic uses. Wastewater effluent discharges often impact the microbiological qualities of surface waters with its attendant health and environmental problems. This study evaluated the microbiological qualities of the discharged effluents of four selected wastewater treatment plants in Amathole and Chris Hani District Municipalities of the Eastern Cape Province over a twelve-month sampling period. Microbiological analysis (faecal coliform, Escherichia coli and Escherichia coli O157:H7) was done using standard methods and polymerase chain reaction method was used to confirm identities ofbacterial isolates. Presumptive bacteria counts ranged as follows: faecal coliforms 0 to 1.6 × 103 CFU/100 ml, E. coli 0 to 1.4 × 103 CFU/100 ml and E. coli O157:H7 0 to 9.6 × 102 CFU/100 ml. Forty eight percent (305/626) of the presumptive E. coli isolates were confirmed using species-specific uidA gene which code for β-glucuronidase enzyme in E. coli. Antibiotic susceptibility profile of the isolate using a panel of 10 antibiotics shows 100% (150/150) resistance to antibiotics rifampicin and penicillin G while 49.3% (74/150) of the isolates and 46.7% (70/150) were susceptible to streptomycin and cefotaxime respectively. Multiple antibiotic resistance phenotypes (MARP) of the isolates showed resistance to two or more test antibiotics while the calculated multiple antibiotic resistance index (MARI) for the tested isolated is 0.49. The detection of potentially pathogenic E. coli in the final effluents suggestspotential danger to the receiving water bodies where the effluents are discharge. The high MARI valued obtained in this study indicates that the isolates are form environment where the tested antibiotics are being used and may further lead to the spread of multiple antibiotics resistance among other pathogens that may be present in the same environment.
- Full Text:
Evaluation of the final effluents of some wastewater treatment plants in Amathole and Chris Hani District Municipality of the Eastern Cape Province as sources of vibrio pathogens in the aquatic environment
- Authors: Nongogo, Vuyokazi
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11287 , http://hdl.handle.net/10353/d1019813
- Description: Certain areas in the world still depend on the receiving water bodies as sources of domestic water and for recreational purposes. The discharge of poor quality effluents from wastewater treatment plants can impact negatively on these water bodies, as they can act as vehicles for pathogens to the environment, posing a threat to humans if such water is used without precaution. Vibrio species are amongst those pathogens that can survive wastewater treatment processes, ending up in the environment, hence the aim of this study was to evaluate the final effluents of some wastewater treatment plants as sources of vibrio pathogens. Five wastewater treatment plants (WWTP) located in Amathole and Chris Hani District Municipalities in the Eastern Cape were used in this study. Samples were collected monthly from September 2012 – August 2013 and analysed using the standard membrane filtration technique. Yellow and green colonies on TCBS agar were enumerated as presumptive Vibrio species and expressed as CFU/100ml for each plant. Colonies were later picked based on their phenotypic characteristics, sub-cultured on fresh TCBS agar to ascertain purity. These presumptive isolates were then subjected to Gram staining and Oxidase test. Gram negative and Oxidase positive isolates were selected for further confirmation using Polymerised Chain Reaction (PCR). PCR was also employed for characterisation of Vibrio into three species viz V. parahaemolyticus, V. fluvialis and V. vulnificus. Antibiogram profile of the characterised species was then determined together with the presence of relevant antibiotic resistance genes Vibrio densities for the twelve month period ranged between 0 - 1.48×104 CFU/100ml with two of the plants located in East bank and Queenstown characterized by extremely high counts and one plant( Reeston) with very low counts.Three hundred presumptive Vibrio isolates were screened for identity confirmation. Of these, the dominating species found was V. fluvialis (28.6%) followed by V. vulnificus (28%) and the least was found to be V. parahaemolyticus (11.6%). The remaining unidentified 31.6% were suspected to belong to other Vibrio species not covered within the scope of this study. All the confirmed isolates i.e., V. parahaemolyticus, V. vulnificus and V. fluvialis were susceptible to imipenem, gentamicin and meropenem and resistant to only tetracycline. Between 60-100% of the V. parahaemolyticus isolates, 7.1% to 100 % V. vulnificus isolates and 2.5 to 100 % V. fluvialis showed resistances to polymixin B, sulfamethazole, erythromycin, penicillin G, chloramphenicol, trimethroprim and trimethroprim & sulfamethazole. Antibiotic Resistance Genes that were assessed included dfRA, SXT, floR and Sul2 varying in proportion with each species showing diversity in the Vibrio community. The dfR A gene was detected in all the V. parahaemolyticus isolates while floR gene was not detected in any of the isolates belonging to the three species. The distribution of sul2 gene cut across the species being 1% (1) in V. fluvialis, 3% (1) in V. parahaemolyticus and 4% (3) in V. vulnificus. The SXT gene was only determined in V. parahaemolyticus. It is clear that the final effluents of the selected plants are reservoirs for Vibrio pathogens as well as antibiotic resistance genes in the environment. The isolation of Vibrio from WWTP shows that this pathogen is in circulation in some pockets of the population. Therefore, wastewater treatment plants need to be properly monitored to ensure that they comply with set guidelines.
- Full Text:
- Authors: Nongogo, Vuyokazi
- Date: 2014
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11287 , http://hdl.handle.net/10353/d1019813
- Description: Certain areas in the world still depend on the receiving water bodies as sources of domestic water and for recreational purposes. The discharge of poor quality effluents from wastewater treatment plants can impact negatively on these water bodies, as they can act as vehicles for pathogens to the environment, posing a threat to humans if such water is used without precaution. Vibrio species are amongst those pathogens that can survive wastewater treatment processes, ending up in the environment, hence the aim of this study was to evaluate the final effluents of some wastewater treatment plants as sources of vibrio pathogens. Five wastewater treatment plants (WWTP) located in Amathole and Chris Hani District Municipalities in the Eastern Cape were used in this study. Samples were collected monthly from September 2012 – August 2013 and analysed using the standard membrane filtration technique. Yellow and green colonies on TCBS agar were enumerated as presumptive Vibrio species and expressed as CFU/100ml for each plant. Colonies were later picked based on their phenotypic characteristics, sub-cultured on fresh TCBS agar to ascertain purity. These presumptive isolates were then subjected to Gram staining and Oxidase test. Gram negative and Oxidase positive isolates were selected for further confirmation using Polymerised Chain Reaction (PCR). PCR was also employed for characterisation of Vibrio into three species viz V. parahaemolyticus, V. fluvialis and V. vulnificus. Antibiogram profile of the characterised species was then determined together with the presence of relevant antibiotic resistance genes Vibrio densities for the twelve month period ranged between 0 - 1.48×104 CFU/100ml with two of the plants located in East bank and Queenstown characterized by extremely high counts and one plant( Reeston) with very low counts.Three hundred presumptive Vibrio isolates were screened for identity confirmation. Of these, the dominating species found was V. fluvialis (28.6%) followed by V. vulnificus (28%) and the least was found to be V. parahaemolyticus (11.6%). The remaining unidentified 31.6% were suspected to belong to other Vibrio species not covered within the scope of this study. All the confirmed isolates i.e., V. parahaemolyticus, V. vulnificus and V. fluvialis were susceptible to imipenem, gentamicin and meropenem and resistant to only tetracycline. Between 60-100% of the V. parahaemolyticus isolates, 7.1% to 100 % V. vulnificus isolates and 2.5 to 100 % V. fluvialis showed resistances to polymixin B, sulfamethazole, erythromycin, penicillin G, chloramphenicol, trimethroprim and trimethroprim & sulfamethazole. Antibiotic Resistance Genes that were assessed included dfRA, SXT, floR and Sul2 varying in proportion with each species showing diversity in the Vibrio community. The dfR A gene was detected in all the V. parahaemolyticus isolates while floR gene was not detected in any of the isolates belonging to the three species. The distribution of sul2 gene cut across the species being 1% (1) in V. fluvialis, 3% (1) in V. parahaemolyticus and 4% (3) in V. vulnificus. The SXT gene was only determined in V. parahaemolyticus. It is clear that the final effluents of the selected plants are reservoirs for Vibrio pathogens as well as antibiotic resistance genes in the environment. The isolation of Vibrio from WWTP shows that this pathogen is in circulation in some pockets of the population. Therefore, wastewater treatment plants need to be properly monitored to ensure that they comply with set guidelines.
- Full Text:
Molecular study of mycobacterium tuberculosis complex (MTBC) DNA from Port Elizabeth
- Authors: Londiwe, Bhembe Nolwazi
- Date: 2014
- Subjects: Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11281 , http://hdl.handle.net/10353/d1016163 , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis complex (MTBC) is a causative agent of tuberculosis (TB) in humans and animals. The burden of tuberculosis in South Africa is worsened by the concurrent epidemic of HIV. The dynamic of TB epidemics has been investigated and yet little data has been given about the Eastern Cape, particularly Port Elizabeth. The study aimed to investigate the prevalence of drug resistant MTBC and to determine the mutations causing resistance in Port Elizabeth. One hundred and ninety (190) DNA samples isolated from sputum specimen in humans suspected of having TB were amplified using the Seeplex® MTB Nested ACE detection assay. To differentiate Mycobacterium tuberculosis complex (MTBC) members for surveillance purposes a multiplex polymerase chain reaction (PCR) method was done based on genomic regions of differences such as RD1, RD1mic, RD2seal, RD4, RD9 and RD12. Target genes known to confer resistance to first and second-line drugs were amplified and the amplicons sequenced using Big Dye Terminator DNA sequencing kit v3.1 (Applied Biosystems, UK). The patient’s demographic profiles were obtained from the National Health Laboratory Service (NHLS). All hundred and ninety DNA samples tested positive for MTBC using the Seeplex® MTB Nested ACE assay. Results show a high prevalence of extensive drug resistant TB in Port Elizabeth, Eastern Cape Province. One hundred and eighty four (184) DNA isolates were used in the identification of different MTBC species. We ended up working with 184 DNA isolates because we ran out of DNA, and we could not go back to isolate DNA from the affected individuals due to the fact that some patients died, while some have been released to go to their homes. From the 184 DNA isolates 45 (24.5%) isolates were identified to be M. tuberculosis, 94 isolates (51.1%) to be M. bovis BCG and 3 isolates (1.6%) to be M. cannetti. Sequencing results show the position of mutation in each DNA isolate; however in the study we got resistance to MDR to be 100% and 42% pre-XDR while 58% was XDR. These results raise an alarm for the prevalence MDR in MTBC from Port Elizabeth. This is a serious health concern which calls for a need to strategise on the identification of extensive drug resistant TB patients from multi-drug resistant TB patients and ensure monitoring of their treatment.
- Full Text:
- Authors: Londiwe, Bhembe Nolwazi
- Date: 2014
- Subjects: Mycobacterium tuberculosis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11281 , http://hdl.handle.net/10353/d1016163 , Mycobacterium tuberculosis
- Description: Mycobacterium tuberculosis complex (MTBC) is a causative agent of tuberculosis (TB) in humans and animals. The burden of tuberculosis in South Africa is worsened by the concurrent epidemic of HIV. The dynamic of TB epidemics has been investigated and yet little data has been given about the Eastern Cape, particularly Port Elizabeth. The study aimed to investigate the prevalence of drug resistant MTBC and to determine the mutations causing resistance in Port Elizabeth. One hundred and ninety (190) DNA samples isolated from sputum specimen in humans suspected of having TB were amplified using the Seeplex® MTB Nested ACE detection assay. To differentiate Mycobacterium tuberculosis complex (MTBC) members for surveillance purposes a multiplex polymerase chain reaction (PCR) method was done based on genomic regions of differences such as RD1, RD1mic, RD2seal, RD4, RD9 and RD12. Target genes known to confer resistance to first and second-line drugs were amplified and the amplicons sequenced using Big Dye Terminator DNA sequencing kit v3.1 (Applied Biosystems, UK). The patient’s demographic profiles were obtained from the National Health Laboratory Service (NHLS). All hundred and ninety DNA samples tested positive for MTBC using the Seeplex® MTB Nested ACE assay. Results show a high prevalence of extensive drug resistant TB in Port Elizabeth, Eastern Cape Province. One hundred and eighty four (184) DNA isolates were used in the identification of different MTBC species. We ended up working with 184 DNA isolates because we ran out of DNA, and we could not go back to isolate DNA from the affected individuals due to the fact that some patients died, while some have been released to go to their homes. From the 184 DNA isolates 45 (24.5%) isolates were identified to be M. tuberculosis, 94 isolates (51.1%) to be M. bovis BCG and 3 isolates (1.6%) to be M. cannetti. Sequencing results show the position of mutation in each DNA isolate; however in the study we got resistance to MDR to be 100% and 42% pre-XDR while 58% was XDR. These results raise an alarm for the prevalence MDR in MTBC from Port Elizabeth. This is a serious health concern which calls for a need to strategise on the identification of extensive drug resistant TB patients from multi-drug resistant TB patients and ensure monitoring of their treatment.
- Full Text:
Prevalence and pathogenicity of vibrios in treated final effluents of selected wastewater treatment plants in the Amathole District Municipality of Eastern Cape Province of South Africa
- Authors: Badela, Andiswa Unathi
- Date: 2014
- Subjects: Sewage disposal plants -- South Africa -- Eastern Cape , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Escherichia coli -- South Africa -- Eastern Cape , Bacterial diseases -- Pathogenesis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11284 , http://hdl.handle.net/10353/d1019774 , Sewage disposal plants -- South Africa -- Eastern Cape , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Escherichia coli -- South Africa -- Eastern Cape , Bacterial diseases -- Pathogenesis
- Description: Waterborne diarrhoeal infections continue to be a major health setback in developing countries, especially in rural areas which lack adequate supply of portable water and sanitation facilities. Globally, waterborne diarrhoeal infections occur with an estimated mortality rate of 10–25 million deaths per year, 95% of which are children under the age of 5 years. The Vibrio species is one of the major groups of enteric pathogens that are responsible for diarrhoeal infections. Many strains of these bacterial species continue to cause epidemics of diarrhoea throughout the world. In this study, the prevalence of Vibrio pathogens in wastewater final effluents was assessed. Wastewater final effluent and discharge point samples were collected monthly between September 2012 and August 2013. All samples were collected aseptically using sterile 1 L Nalgene bottles containing 0.5 ml of sterile sodium thiosulphate solution and transported on ice to the laboratory for analyses within 6 h of collection. The membrane filtration method was used for enumeration of presumptive Vibrio densities on thiosulfate citrate bile salt (TCBS) agar plates. Polymerase chain reaction (PCR) was then used to confirm the identities of the presumptive Vibrio species using the species-specific primers. The confirmed isolates were further subjected to molecular characterization to confirm their respective pathotypes. Presumptive Vibrio densities varied from 0 to 2.11 × 102 cfu/100 ml. Out of 300 confirmed Vibrio isolates; 13.3% (40/300) were Vibrio fluvialis, 22% (66/300) were confirmed to be Vibrio parahaemolyticus, and 24.7% (74/300) proved to be Vibrio vulnificus, and 40% (120/300) were other Vibrio species which were not assessed for in this study. The strains of Vibrio fluvialis were found to exhibit 100% resistance to Polymixin and Tetracycline. However, Gentamicin was active against all the three Vibrio species selected for the purpose of this research. The recovery of Vibrio species in the discharged effluents throughout the sampling period even in adequately disinfected effluents is not acceptable considering the fact that Vibrio is a pathogenic bacterium. The findings of this study underline the need for constant monitoring of the microbiological qualities of discharged effluents and might also be suggestive for a review of the disinfection methods used at the treatment works.
- Full Text:
- Authors: Badela, Andiswa Unathi
- Date: 2014
- Subjects: Sewage disposal plants -- South Africa -- Eastern Cape , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Escherichia coli -- South Africa -- Eastern Cape , Bacterial diseases -- Pathogenesis
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11284 , http://hdl.handle.net/10353/d1019774 , Sewage disposal plants -- South Africa -- Eastern Cape , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Escherichia coli -- South Africa -- Eastern Cape , Bacterial diseases -- Pathogenesis
- Description: Waterborne diarrhoeal infections continue to be a major health setback in developing countries, especially in rural areas which lack adequate supply of portable water and sanitation facilities. Globally, waterborne diarrhoeal infections occur with an estimated mortality rate of 10–25 million deaths per year, 95% of which are children under the age of 5 years. The Vibrio species is one of the major groups of enteric pathogens that are responsible for diarrhoeal infections. Many strains of these bacterial species continue to cause epidemics of diarrhoea throughout the world. In this study, the prevalence of Vibrio pathogens in wastewater final effluents was assessed. Wastewater final effluent and discharge point samples were collected monthly between September 2012 and August 2013. All samples were collected aseptically using sterile 1 L Nalgene bottles containing 0.5 ml of sterile sodium thiosulphate solution and transported on ice to the laboratory for analyses within 6 h of collection. The membrane filtration method was used for enumeration of presumptive Vibrio densities on thiosulfate citrate bile salt (TCBS) agar plates. Polymerase chain reaction (PCR) was then used to confirm the identities of the presumptive Vibrio species using the species-specific primers. The confirmed isolates were further subjected to molecular characterization to confirm their respective pathotypes. Presumptive Vibrio densities varied from 0 to 2.11 × 102 cfu/100 ml. Out of 300 confirmed Vibrio isolates; 13.3% (40/300) were Vibrio fluvialis, 22% (66/300) were confirmed to be Vibrio parahaemolyticus, and 24.7% (74/300) proved to be Vibrio vulnificus, and 40% (120/300) were other Vibrio species which were not assessed for in this study. The strains of Vibrio fluvialis were found to exhibit 100% resistance to Polymixin and Tetracycline. However, Gentamicin was active against all the three Vibrio species selected for the purpose of this research. The recovery of Vibrio species in the discharged effluents throughout the sampling period even in adequately disinfected effluents is not acceptable considering the fact that Vibrio is a pathogenic bacterium. The findings of this study underline the need for constant monitoring of the microbiological qualities of discharged effluents and might also be suggestive for a review of the disinfection methods used at the treatment works.
- Full Text:
Quality indices of the final effluents of two sub-urban-based wastewater treatment plants in Amathole District Municipality in the Eastern Cape Province of South Africa
- Authors: Gcilitshana, Onele
- Date: 2014
- Subjects: Whole effluent toxicity testing -- South Africa -- Eastern Cape , Sewage disposal plants -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape , Effluent quality -- Testing , Viruses -- South Africa -- Eastern Cape , Water reuse -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11288 , http://hdl.handle.net/10353/d1019816 , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Sewage disposal plants -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape , Effluent quality -- Testing , Viruses -- South Africa -- Eastern Cape , Water reuse -- South Africa -- Eastern Cape
- Description: Worldwide, water reuse is promoted as an alternative for water scarcity, however, wastewater effluents have been reported as possible contaminants to surface water. The failure of some wastewater treatment processes to completely remove organic matter and some pathogenic microorganisms allows them to initiate infections. This manifests more in communities where surface water is used directly for drinking. To assess water quality, bacteria alone cannot be used as it may be absent in virus-contaminated water. This study was carried out to assess the quality of two wastewater treatment plant effluents from the Eastern Cape Province of South Africa. Physicochemical parameters and microbiological parameters like faecal coliforms, adenovirus, rotavirus, hepatitis A virus, norovirus and enterovirus were evaluated over a projected period of one year. Physicochemical parameters were measured on site using multiparameters, faecal coliforms enumerated using culture-based methods and viruses are detected using both conventional and real-time PCR. Physicochemical parameters like electrical conductivity, turbidity, free chlorine and phosphates were incompliant with the standards set by the Department of Water affairs for effluents to be discharged. Faecal coliform counts were nil for one plant (WWTP-R) where they correlated inversely (P < 0.01) with the high free chlorine. For WWTP-K, faecal coliforms were detected in 27% of samples in the range of 9.9 × 101 to 6.4× 104 CFU/100ml. From the five viruses assessed, three viruses were detected with Rotavirus being the most abundant (0-2034176 genome copies/L) followed by Adenovirus (0–275 genome copies/L) then Hepatitis A virus (0–71 genome copies/L) in the WWTP-K while none of the viruses was detected in WWTP-R. Species B, species C and Adv41 serotypes were detected from the May 2013 and June 2013 samples where almost all parameters were incompliant in the plant. The detection of these viruses in supposedly treated effluents is suggestive of these being the sources of contamination to surface water and therefore renders surface waters unsafe for direct use and to aquatic life. Although real-time PCR is more sensitive and reliable in detection of viruses, use of cell-culture techniques in this study would have been more efficient in confirming the infectivity of the viruses detected, hence the recommendation of these techniques in future projects of this nature.
- Full Text:
- Authors: Gcilitshana, Onele
- Date: 2014
- Subjects: Whole effluent toxicity testing -- South Africa -- Eastern Cape , Sewage disposal plants -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape , Effluent quality -- Testing , Viruses -- South Africa -- Eastern Cape , Water reuse -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11288 , http://hdl.handle.net/10353/d1019816 , Whole effluent toxicity testing -- South Africa -- Eastern Cape , Sewage disposal plants -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape , Effluent quality -- Testing , Viruses -- South Africa -- Eastern Cape , Water reuse -- South Africa -- Eastern Cape
- Description: Worldwide, water reuse is promoted as an alternative for water scarcity, however, wastewater effluents have been reported as possible contaminants to surface water. The failure of some wastewater treatment processes to completely remove organic matter and some pathogenic microorganisms allows them to initiate infections. This manifests more in communities where surface water is used directly for drinking. To assess water quality, bacteria alone cannot be used as it may be absent in virus-contaminated water. This study was carried out to assess the quality of two wastewater treatment plant effluents from the Eastern Cape Province of South Africa. Physicochemical parameters and microbiological parameters like faecal coliforms, adenovirus, rotavirus, hepatitis A virus, norovirus and enterovirus were evaluated over a projected period of one year. Physicochemical parameters were measured on site using multiparameters, faecal coliforms enumerated using culture-based methods and viruses are detected using both conventional and real-time PCR. Physicochemical parameters like electrical conductivity, turbidity, free chlorine and phosphates were incompliant with the standards set by the Department of Water affairs for effluents to be discharged. Faecal coliform counts were nil for one plant (WWTP-R) where they correlated inversely (P < 0.01) with the high free chlorine. For WWTP-K, faecal coliforms were detected in 27% of samples in the range of 9.9 × 101 to 6.4× 104 CFU/100ml. From the five viruses assessed, three viruses were detected with Rotavirus being the most abundant (0-2034176 genome copies/L) followed by Adenovirus (0–275 genome copies/L) then Hepatitis A virus (0–71 genome copies/L) in the WWTP-K while none of the viruses was detected in WWTP-R. Species B, species C and Adv41 serotypes were detected from the May 2013 and June 2013 samples where almost all parameters were incompliant in the plant. The detection of these viruses in supposedly treated effluents is suggestive of these being the sources of contamination to surface water and therefore renders surface waters unsafe for direct use and to aquatic life. Although real-time PCR is more sensitive and reliable in detection of viruses, use of cell-culture techniques in this study would have been more efficient in confirming the infectivity of the viruses detected, hence the recommendation of these techniques in future projects of this nature.
- Full Text:
Assessment of the water quality, incidence of enteric viruses and microbial risk in the Buffalo River in the Eastern Cape Province of South Africa
- Chigor, Vincent Nnamdigadi https://orcid.org/0000-0002-0811-4526
- Authors: Chigor, Vincent Nnamdigadi https://orcid.org/0000-0002-0811-4526
- Date: 2013-03
- Subjects: Water quality , Water -- Microbiology
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24272 , vital:62596
- Description: Buffalo River is an important water resource in the Eastern Cape Province of South Africa. Over a 1-year period (August 2010–July 2011), the water quality and incidence of human enteric viruses (HEntVs) was assessed, using standard methods and molecular techniques and a total 72 composite water samples collected monthly from a total of 6 sites located on the river and three dams along its course. The sites were selected based on a number of factors including geographical location, anthropogenic activity/major water use, rural/urban status and access. A total of 13 physicochemical parameters were determined using the standard methods. The counts of faecal indicator bacteria (FIB) including total coliforms (TC), faecal coliforms (FC) and enterococci (ENT) were determined by the membrane filtration technique. HEntVs were concentrated using an adsorption-elution method based on cation (Al3+)-coated membrane filter. Real-time quantitative polymerase chain reaction (qPCR) was used for the detection and quantification of human adenoviruses (HAdV), and real-time reverse transcriptase-PCR (RT-qPCR) was used for the quantitative detection of hepatitis A virus (HAV), human rotaviruses (RoV) and enteroviruses (EnV). The detected HAdV were characterized by multiplex conventional/semi-nested PCR methods. The risks for human health constituted by exposure to the detected HEntVs at the six sites were evaluated by a static quantitative microbial risk assessment (QMRA) using both the exponential and beta-Poisson models. Water temperature ranged from 11 to 28oC, while pH varied from 6.6 to 10.7, and turbidity from 1.7 to 133 NTU. Electrical conductivity (EC), total dissolved solids (TDS) and salinity showed drastic variations (42.3-46693 μS/cm, 20.3–23350 mg/L and 0.02–33.8 PSU respectively). The concentrations of other parameters ranged as follows: chloride (3.7–168 mg/L); DO (6.9–11.1); BOD (0.6–9.4); COD (3.7–45.9); nitrite-nitrogen (0.02–0.21); nitrate-nitrogen (1–4.47); and orthophosphate (0.01–1.72). TC, FC and ENT counts were high and ranged from 1.9 × 102–3.8 × 107 cfu/100 mL, 0–3.0×105 cfu/100 mL and 0–5.3 × 105 cfu/100 mL for TC, FC and ENT respectively. Significantly (P<0.05) higher concentrations of FC and ENT were observed at the sampling sites located at the lower reaches of the river compared to the upper reaches. The FIB counts mostly exceeded the maximum limits recommended by national and international guidelines for safe fresh produce irrigation, domestic applications, full-contact recreation and livestock watering. Significant (P<0.01) positive correlations existed between TDS and salinity (r=0.921), between turbidity and each of TC (r=0.552) and FC (r=0.425), as well as between BOD and each of TC (r=0.282), FC (r=0.472) and ENT (r=0.552). Phosphate correlated positively with FC (r=0.424), and nitrate also with the same, FC (r=0.460). A strong positive correlation existed between FC and ENT (r=0.915). There existed a significant (P˂0.01) inverse correlation between enteric viruses and each of water temperature (r=-0.191) and pH (r=-0.234). No correlation could be deduced between enteric viruses and all the tested chemical and bacteriological parameters. HAV, HAdV, RoV and EnV were detected in 43.1percent, 34.7percent, 13.9percent and 9.7percent respectively of the total 72 water samples tested. Two or more viruses were detected in 22.2 percent of the samples. HAdV were detected at 5 of the 6 sampling sites with concentrations ranging from 1.2×101 genome copies (GC)/litre to 4.71×103 GC/litre. Epidemiologically important serotypes, Ad40/41 constituted 83.3percent, while Ad21 made up 16.7percent of all the HAdV detected. HAV was detected at all the sites in significantly (p < 0.05) varying concentrations that ranged from 1.5 × 101–1.9 × 105 GC/litre compared to RoV and EnV. Neither of RoV nor EnV was detected at any of the dams. The detected concentrations at the non-dam sites ranged from 2.5 × 101–2.1 × 103 GC/litre and 1.3 × 101–8.6 × 101 GC/litre for RoV and EnV respectively. The values for the estimated daily risks of enteric virus infection varied with sites and exposure scenario, and ranged from 7.31×10-3–1 (for HAdV), 4.23×10-2–6.54×10-1 (RoV), 2.32×10-4–1.73×10-1 (HAV) and 1.32×10-4–5.70×10-2 (EnV). The yearly risks of infection in individuals exposed to the river/dam water via drinking, recreational, domestic or irrigational activities were unacceptably high, exceeding the acceptable yearly risk of 0.01percent (10-4 infection/person/year) recommended by the USEPA for drinking water. The risks of illness and of death from infection ranged from 6.58×10-5–5.0×10-1 and 6.58×10-9–5.0×10-5 respectively. Data on the physicochemical and bacteriological parameters showed that the Buffalo River water quality was poor, and deteriorated in the plains compared to the upper reaches. These water quality data, the presence of enteric viruses and the QMRA data, that revealed unacceptably high risks of enteric virus infections, and of illness and mortality from the infections, show that the Buffalo River and its dams are contaminated waters that constitute significant public health hazards. Provision of adequate sanitary infrastructure will help prevent source water contamination, and public health education aimed at improving personal, household and community hygiene is imperative. Monitoring enteric viruses in rivers and source water dams is necessary and useful as a risk assessment tool for the exposed population. Future research should consider a comprehensive characterization of the detected viruses. This work is both a significant contribution to the molecular epidemiology of enteric viruses and the first report on molecular detection and quantification of enteric viruses in surface waters in the Eastern Cape. , Thesis (PhD) -- Faculty of Science and Agriculture, 2013
- Full Text:
- Authors: Chigor, Vincent Nnamdigadi https://orcid.org/0000-0002-0811-4526
- Date: 2013-03
- Subjects: Water quality , Water -- Microbiology
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24272 , vital:62596
- Description: Buffalo River is an important water resource in the Eastern Cape Province of South Africa. Over a 1-year period (August 2010–July 2011), the water quality and incidence of human enteric viruses (HEntVs) was assessed, using standard methods and molecular techniques and a total 72 composite water samples collected monthly from a total of 6 sites located on the river and three dams along its course. The sites were selected based on a number of factors including geographical location, anthropogenic activity/major water use, rural/urban status and access. A total of 13 physicochemical parameters were determined using the standard methods. The counts of faecal indicator bacteria (FIB) including total coliforms (TC), faecal coliforms (FC) and enterococci (ENT) were determined by the membrane filtration technique. HEntVs were concentrated using an adsorption-elution method based on cation (Al3+)-coated membrane filter. Real-time quantitative polymerase chain reaction (qPCR) was used for the detection and quantification of human adenoviruses (HAdV), and real-time reverse transcriptase-PCR (RT-qPCR) was used for the quantitative detection of hepatitis A virus (HAV), human rotaviruses (RoV) and enteroviruses (EnV). The detected HAdV were characterized by multiplex conventional/semi-nested PCR methods. The risks for human health constituted by exposure to the detected HEntVs at the six sites were evaluated by a static quantitative microbial risk assessment (QMRA) using both the exponential and beta-Poisson models. Water temperature ranged from 11 to 28oC, while pH varied from 6.6 to 10.7, and turbidity from 1.7 to 133 NTU. Electrical conductivity (EC), total dissolved solids (TDS) and salinity showed drastic variations (42.3-46693 μS/cm, 20.3–23350 mg/L and 0.02–33.8 PSU respectively). The concentrations of other parameters ranged as follows: chloride (3.7–168 mg/L); DO (6.9–11.1); BOD (0.6–9.4); COD (3.7–45.9); nitrite-nitrogen (0.02–0.21); nitrate-nitrogen (1–4.47); and orthophosphate (0.01–1.72). TC, FC and ENT counts were high and ranged from 1.9 × 102–3.8 × 107 cfu/100 mL, 0–3.0×105 cfu/100 mL and 0–5.3 × 105 cfu/100 mL for TC, FC and ENT respectively. Significantly (P<0.05) higher concentrations of FC and ENT were observed at the sampling sites located at the lower reaches of the river compared to the upper reaches. The FIB counts mostly exceeded the maximum limits recommended by national and international guidelines for safe fresh produce irrigation, domestic applications, full-contact recreation and livestock watering. Significant (P<0.01) positive correlations existed between TDS and salinity (r=0.921), between turbidity and each of TC (r=0.552) and FC (r=0.425), as well as between BOD and each of TC (r=0.282), FC (r=0.472) and ENT (r=0.552). Phosphate correlated positively with FC (r=0.424), and nitrate also with the same, FC (r=0.460). A strong positive correlation existed between FC and ENT (r=0.915). There existed a significant (P˂0.01) inverse correlation between enteric viruses and each of water temperature (r=-0.191) and pH (r=-0.234). No correlation could be deduced between enteric viruses and all the tested chemical and bacteriological parameters. HAV, HAdV, RoV and EnV were detected in 43.1percent, 34.7percent, 13.9percent and 9.7percent respectively of the total 72 water samples tested. Two or more viruses were detected in 22.2 percent of the samples. HAdV were detected at 5 of the 6 sampling sites with concentrations ranging from 1.2×101 genome copies (GC)/litre to 4.71×103 GC/litre. Epidemiologically important serotypes, Ad40/41 constituted 83.3percent, while Ad21 made up 16.7percent of all the HAdV detected. HAV was detected at all the sites in significantly (p < 0.05) varying concentrations that ranged from 1.5 × 101–1.9 × 105 GC/litre compared to RoV and EnV. Neither of RoV nor EnV was detected at any of the dams. The detected concentrations at the non-dam sites ranged from 2.5 × 101–2.1 × 103 GC/litre and 1.3 × 101–8.6 × 101 GC/litre for RoV and EnV respectively. The values for the estimated daily risks of enteric virus infection varied with sites and exposure scenario, and ranged from 7.31×10-3–1 (for HAdV), 4.23×10-2–6.54×10-1 (RoV), 2.32×10-4–1.73×10-1 (HAV) and 1.32×10-4–5.70×10-2 (EnV). The yearly risks of infection in individuals exposed to the river/dam water via drinking, recreational, domestic or irrigational activities were unacceptably high, exceeding the acceptable yearly risk of 0.01percent (10-4 infection/person/year) recommended by the USEPA for drinking water. The risks of illness and of death from infection ranged from 6.58×10-5–5.0×10-1 and 6.58×10-9–5.0×10-5 respectively. Data on the physicochemical and bacteriological parameters showed that the Buffalo River water quality was poor, and deteriorated in the plains compared to the upper reaches. These water quality data, the presence of enteric viruses and the QMRA data, that revealed unacceptably high risks of enteric virus infections, and of illness and mortality from the infections, show that the Buffalo River and its dams are contaminated waters that constitute significant public health hazards. Provision of adequate sanitary infrastructure will help prevent source water contamination, and public health education aimed at improving personal, household and community hygiene is imperative. Monitoring enteric viruses in rivers and source water dams is necessary and useful as a risk assessment tool for the exposed population. Future research should consider a comprehensive characterization of the detected viruses. This work is both a significant contribution to the molecular epidemiology of enteric viruses and the first report on molecular detection and quantification of enteric viruses in surface waters in the Eastern Cape. , Thesis (PhD) -- Faculty of Science and Agriculture, 2013
- Full Text:
Assessment of the incidence of E.coli in Tyume and Buffalo rivers in the Eastern Cape Province of South Africa
- Authors: Koba, Siziwe
- Date: 2013
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11272 , http://hdl.handle.net/10353/d1006889
- Description: Waterborne diseases are among the leading causes of morbidity and mortality in developing countries and every year around 2.2 million people die due to basic hygiene related diseases like coliform diarrhoea. Universal access to safe drinking water and sanitation has been promoted as an essential step in reducing these preventable diseases (Tambekar and Banginwar, 2005; Patil, 2004; Charan, 2004). Diarrheagenic Escherichia coli are one of the most important etiologic agents of acute diarrhea and represent a major public health problem in developing countries like South Africa The present study was conducted between August 2010 and July 2011 to investigate the prevalence and distribution of virulent E. coli strains from water samples collected from Tyume and Buffalo River, located in Eastern Cape Province of South Africa using conventional microbiological methods and PCR analysis. Twelve Water samples were collected from three different sites of the rivers, viz; upstream, middle stream and the downstream of the dam. E.coli was isolated by the membrane filtration method on mFC. A total of 374 isolates from both rivers were identified by convenctional microbiological techniques. For both Buffalo and Tyume River, A large proportion (87 and 114, respectively) of the isolates from the mid stream samples satisfied the identification characteristics for E. coli (blue colonies on MFC agar and violet/purple colonies on Chromocult agar) and thus revealing high levels contamination when compared to isolates from the downstream (55 and 47) and the upstream (30 and 31) All the isolates that satisfied the primary identification stage were subjected to PCR. DNA was extracted using the boiling method and then the DNA was used as a template for PCR. Specific PCR analysis was performed on all E. coli isolates to amplify the alr gene that codes for alanine racemase Out and of the 202 isolates amplified for Tyume river, 70 (35 percent) were positively identified as E. coli since they possessed the alr gene fragment. and out of the 172 isolates amplified from Buffalo River, 80(47 percent) were also positively identified as E. coli. For both Tyume and Buffalo River, the highest prevalence was observed midstream (39 percent and 56 pecent respectively). The identified E. coli were further characterized into different pathotypes. Amplification of the shig gene, LT gene, EaeA gene, Eagg gene and the ST gene were used to detect pathogenic E.coli. In Tyume River, Genes of ETEC (lt or st) were detected in 21/70 (30 percent); Gene of EPEC (eae) was detected in 14/70 specimens (35 percent); Genes of EAEC (Eagg) was detected in 14/70(35 percent) and genes of EIEC (shig) were detected in 11/70(16 percent). In Buffalo River, no DEC was recovered upstream and downstream of the river. EAEC (8 percent) was the only pathotypes recovered midstream of the river. Strains of all five E. coli categories showed high-level resistance to ampicillin, tetracycline, cotrimoxazole, and chloramphenicol but were highly susceptible to quinolones, aminoglycosides, and novobiocin. The highest resistance (100 percent) amongst the isolates was observed to ampicillin by EAEC, Heat Labile (ETEC) and EIEC, followed by 87.5 percent by EAEC to carbenicillin. The highest susceptibility was to quinolones (100 percent) by all the four categories of E.coli. The screening for antibiotic resistance genes revealed the absence of SHV, CTMX and TetC genes as they were not detected in any of the E.coli isolates. However, TEM genes were observed in 80 percent of the isolates. Integron conserved segment was detected in these same organisms in the same proportion as TEM
- Full Text:
- Authors: Koba, Siziwe
- Date: 2013
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11272 , http://hdl.handle.net/10353/d1006889
- Description: Waterborne diseases are among the leading causes of morbidity and mortality in developing countries and every year around 2.2 million people die due to basic hygiene related diseases like coliform diarrhoea. Universal access to safe drinking water and sanitation has been promoted as an essential step in reducing these preventable diseases (Tambekar and Banginwar, 2005; Patil, 2004; Charan, 2004). Diarrheagenic Escherichia coli are one of the most important etiologic agents of acute diarrhea and represent a major public health problem in developing countries like South Africa The present study was conducted between August 2010 and July 2011 to investigate the prevalence and distribution of virulent E. coli strains from water samples collected from Tyume and Buffalo River, located in Eastern Cape Province of South Africa using conventional microbiological methods and PCR analysis. Twelve Water samples were collected from three different sites of the rivers, viz; upstream, middle stream and the downstream of the dam. E.coli was isolated by the membrane filtration method on mFC. A total of 374 isolates from both rivers were identified by convenctional microbiological techniques. For both Buffalo and Tyume River, A large proportion (87 and 114, respectively) of the isolates from the mid stream samples satisfied the identification characteristics for E. coli (blue colonies on MFC agar and violet/purple colonies on Chromocult agar) and thus revealing high levels contamination when compared to isolates from the downstream (55 and 47) and the upstream (30 and 31) All the isolates that satisfied the primary identification stage were subjected to PCR. DNA was extracted using the boiling method and then the DNA was used as a template for PCR. Specific PCR analysis was performed on all E. coli isolates to amplify the alr gene that codes for alanine racemase Out and of the 202 isolates amplified for Tyume river, 70 (35 percent) were positively identified as E. coli since they possessed the alr gene fragment. and out of the 172 isolates amplified from Buffalo River, 80(47 percent) were also positively identified as E. coli. For both Tyume and Buffalo River, the highest prevalence was observed midstream (39 percent and 56 pecent respectively). The identified E. coli were further characterized into different pathotypes. Amplification of the shig gene, LT gene, EaeA gene, Eagg gene and the ST gene were used to detect pathogenic E.coli. In Tyume River, Genes of ETEC (lt or st) were detected in 21/70 (30 percent); Gene of EPEC (eae) was detected in 14/70 specimens (35 percent); Genes of EAEC (Eagg) was detected in 14/70(35 percent) and genes of EIEC (shig) were detected in 11/70(16 percent). In Buffalo River, no DEC was recovered upstream and downstream of the river. EAEC (8 percent) was the only pathotypes recovered midstream of the river. Strains of all five E. coli categories showed high-level resistance to ampicillin, tetracycline, cotrimoxazole, and chloramphenicol but were highly susceptible to quinolones, aminoglycosides, and novobiocin. The highest resistance (100 percent) amongst the isolates was observed to ampicillin by EAEC, Heat Labile (ETEC) and EIEC, followed by 87.5 percent by EAEC to carbenicillin. The highest susceptibility was to quinolones (100 percent) by all the four categories of E.coli. The screening for antibiotic resistance genes revealed the absence of SHV, CTMX and TetC genes as they were not detected in any of the E.coli isolates. However, TEM genes were observed in 80 percent of the isolates. Integron conserved segment was detected in these same organisms in the same proportion as TEM
- Full Text:
Production and biochemical characterization of new bioflocculants from bacteria isolated from freshwater and marine environments of the Eastern Cape in South Africa
- Mabinya, Leonard Vuyani https://orcid.org/0000-0002-0682-7282
- Authors: Mabinya, Leonard Vuyani https://orcid.org/0000-0002-0682-7282
- Date: 2013-01
- Subjects: Flocculation , Bacteria
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24228 , vital:62445
- Description: The production and characterization of bioflocculants produced by three bacteria belonging to Arthrobacter, Halomonas and Micrococcus genera and isolated from freshwater and marine environments were evaluated both as axenic cultures and as consortia. The influences of cultutre conditions such as carbon, nitrogen and metal ions sources, as well as initial pH on bioflocculant production by individual isolates were investigated. Both Arthrobacter sp. Raats and Halomonas sp. Okoh utilized urea as a nitrogen source of choice for optimal production of the bioflocculants with Micrococcus sp. Leo having a preference for peptone. All three strains differed in as far as the carbon source of choice was concerned with lactose, glucose and sucrose the preferred carbon sources respectively. Also, all three bacterial strains produced an extracellular bioflocculant aerobically but an intial pH 7.0 of the culture media was suitable for both Arthrobacter sp. Raats and Halomonas sp. Okoh with a slightly alkaline pH of 9.0 preferred by Micrococcus sp. Leo. The presence of Mg2+ cations stimulated bioflocculant production by both Arthrobacter sp. Raats and Micrococcus sp. Leo while Ca2+ resulted in more efficient bioflocculant production by Halomonas sp. Okoh. Chemical analyses revealed the bioflocculants produced by both Halomonas sp. Okoh and Micrococcus sp. Leo to be predominantly polysaccharides whereas Arthrobacter sp. Raats produced principally a glycoprotein composed of about 56percent protein and 25percent total carbohydrate. Response surface methodology (RSM) was used to optimize production medium for bioflocculant production by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. Plackett-Burman experimental design showed that fructose, ammonium sulphate and MgCl2 were significant in the high yield of the bioflocculant. Furthermore, central composite design showed that optimal concentration of these critical nutritional sources were 16.14 g/L, 1.55 g/L and 1.88 g/L for fructose, ammonium sulphate and MgCl2 respectively. Quantification of the bioflocculant showed a yield of 6.43 g/L which was in close accord with the predicted value of 6.51 g/L. FTIR spectrometry of the bioflocculant indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide, while SEM imaging revealed a lattice-like structure. The efficiency of the nutrient optimization suggests suitability for industrial applicability. , Thesis (PhD) -- Faculty of Science and Agriculture, 2013
- Full Text:
- Authors: Mabinya, Leonard Vuyani https://orcid.org/0000-0002-0682-7282
- Date: 2013-01
- Subjects: Flocculation , Bacteria
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24228 , vital:62445
- Description: The production and characterization of bioflocculants produced by three bacteria belonging to Arthrobacter, Halomonas and Micrococcus genera and isolated from freshwater and marine environments were evaluated both as axenic cultures and as consortia. The influences of cultutre conditions such as carbon, nitrogen and metal ions sources, as well as initial pH on bioflocculant production by individual isolates were investigated. Both Arthrobacter sp. Raats and Halomonas sp. Okoh utilized urea as a nitrogen source of choice for optimal production of the bioflocculants with Micrococcus sp. Leo having a preference for peptone. All three strains differed in as far as the carbon source of choice was concerned with lactose, glucose and sucrose the preferred carbon sources respectively. Also, all three bacterial strains produced an extracellular bioflocculant aerobically but an intial pH 7.0 of the culture media was suitable for both Arthrobacter sp. Raats and Halomonas sp. Okoh with a slightly alkaline pH of 9.0 preferred by Micrococcus sp. Leo. The presence of Mg2+ cations stimulated bioflocculant production by both Arthrobacter sp. Raats and Micrococcus sp. Leo while Ca2+ resulted in more efficient bioflocculant production by Halomonas sp. Okoh. Chemical analyses revealed the bioflocculants produced by both Halomonas sp. Okoh and Micrococcus sp. Leo to be predominantly polysaccharides whereas Arthrobacter sp. Raats produced principally a glycoprotein composed of about 56percent protein and 25percent total carbohydrate. Response surface methodology (RSM) was used to optimize production medium for bioflocculant production by a consortium of Halomonas sp. Okoh and Micrococcus sp. Leo. Plackett-Burman experimental design showed that fructose, ammonium sulphate and MgCl2 were significant in the high yield of the bioflocculant. Furthermore, central composite design showed that optimal concentration of these critical nutritional sources were 16.14 g/L, 1.55 g/L and 1.88 g/L for fructose, ammonium sulphate and MgCl2 respectively. Quantification of the bioflocculant showed a yield of 6.43 g/L which was in close accord with the predicted value of 6.51 g/L. FTIR spectrometry of the bioflocculant indicated the presence of carboxyl, hydroxyl and amino groups, typical for heteropolysaccharide, while SEM imaging revealed a lattice-like structure. The efficiency of the nutrient optimization suggests suitability for industrial applicability. , Thesis (PhD) -- Faculty of Science and Agriculture, 2013
- Full Text:
Evaluation of the possible application of cowpea genotypes in the farming systems of the Eastern Cape Province, South Africa
- Authors: Adeyemi, Samson Adebowale
- Date: 2012
- Subjects: Cowpea -- South Africa -- Eastern Cape , Cowpea , Plant diversity , Cowpea -- Genetics , DNA fingerprinting of plants
- Language: English
- Type: Thesis , Masters , MSc (Biochemistry)
- Identifier: vital:11274 , http://hdl.handle.net/10353/d1007539 , Cowpea -- South Africa -- Eastern Cape , Cowpea , Plant diversity , Cowpea -- Genetics , DNA fingerprinting of plants
- Description: Characterization studies on the genetic diversity among cultivated cowpea (Vigna unguiculata (L.) varieties are valuable tools to optimize the use of available genetic resources by farmers, local communities, researchers and breeders. Eight cowpea (Vigna unguiculata (L.) genotypes ( Vegetable cowpea, Ivory grey, Okhalweni, Fahari, Fahari dark, 97K-1069-8, IT93K-73h, and 129-3) were subjected to molecular, morphological and agronomical characterization. DNA amplification fingerprinting markers were used to evaluate the genetic diversity among the eight genotypes. Nine random arbitrary primers were used to screen the eight genotypes to assess their ability to reveal polymorphisms in cowpea, and seven of them were selected for use in characterizing the total sample. A total of 43 bands were generated which are all polymorphic. On the average, the primers generated a total of 6.1 polymorphic bands. The resulting data-matrix included 43 analysed bands with a total of 344 characters. Neighbour joining analysis was used to generate the dendrogram, clustering the genotypes into two groups at an agglomerate coefficient of 0.30 irrespective of their geographical origins. The results also showed the presence of significant differences in morphological and quality traits among the genotypes. Fahari yielded the highest concentration of crude protein (46.51 mg/mg dry leaf) while Vegetable cowpea yielded the lowest (24.41 mg/mg dry leaf). The influence of manure was also found to be effective by increasing the crude protein content of the genotypes as shown by Fahari dark with an average of 53.53 mg/mg dry leaf as opposed to 39.85 mg/mg dry leaf without manure application. Although some small clusters grouped accessions of the same growth habits, a general lack of agreement between clustering and morphological features was observed. It can therefore be concluded that the significant differences between the molecular genetic analysis using DAF-PCR markers, morphologic characters and yield traits can be important tools to identify and discriminates the different cowpea genotypes.
- Full Text:
- Authors: Adeyemi, Samson Adebowale
- Date: 2012
- Subjects: Cowpea -- South Africa -- Eastern Cape , Cowpea , Plant diversity , Cowpea -- Genetics , DNA fingerprinting of plants
- Language: English
- Type: Thesis , Masters , MSc (Biochemistry)
- Identifier: vital:11274 , http://hdl.handle.net/10353/d1007539 , Cowpea -- South Africa -- Eastern Cape , Cowpea , Plant diversity , Cowpea -- Genetics , DNA fingerprinting of plants
- Description: Characterization studies on the genetic diversity among cultivated cowpea (Vigna unguiculata (L.) varieties are valuable tools to optimize the use of available genetic resources by farmers, local communities, researchers and breeders. Eight cowpea (Vigna unguiculata (L.) genotypes ( Vegetable cowpea, Ivory grey, Okhalweni, Fahari, Fahari dark, 97K-1069-8, IT93K-73h, and 129-3) were subjected to molecular, morphological and agronomical characterization. DNA amplification fingerprinting markers were used to evaluate the genetic diversity among the eight genotypes. Nine random arbitrary primers were used to screen the eight genotypes to assess their ability to reveal polymorphisms in cowpea, and seven of them were selected for use in characterizing the total sample. A total of 43 bands were generated which are all polymorphic. On the average, the primers generated a total of 6.1 polymorphic bands. The resulting data-matrix included 43 analysed bands with a total of 344 characters. Neighbour joining analysis was used to generate the dendrogram, clustering the genotypes into two groups at an agglomerate coefficient of 0.30 irrespective of their geographical origins. The results also showed the presence of significant differences in morphological and quality traits among the genotypes. Fahari yielded the highest concentration of crude protein (46.51 mg/mg dry leaf) while Vegetable cowpea yielded the lowest (24.41 mg/mg dry leaf). The influence of manure was also found to be effective by increasing the crude protein content of the genotypes as shown by Fahari dark with an average of 53.53 mg/mg dry leaf as opposed to 39.85 mg/mg dry leaf without manure application. Although some small clusters grouped accessions of the same growth habits, a general lack of agreement between clustering and morphological features was observed. It can therefore be concluded that the significant differences between the molecular genetic analysis using DAF-PCR markers, morphologic characters and yield traits can be important tools to identify and discriminates the different cowpea genotypes.
- Full Text:
Productions of high quality wastewater final effluents remain a challenge in the Eastern Cape Province of South Africa
- Authors: Gusha, Siyabulela Stability
- Date: 2012
- Subjects: Water-supply, Rural -- Health aspects -- South Africa , Pathogenic microorganisms -- South Africa -- Eastern Cape , Water-supply, Rural -- South Africa -- Eastern Cape , Effluent quality -- Testing , Sewage disposal plants -- South Africa -- Eastern Cape , Escherichia coli
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11265 , http://hdl.handle.net/10353/489 , Water-supply, Rural -- Health aspects -- South Africa , Pathogenic microorganisms -- South Africa -- Eastern Cape , Water-supply, Rural -- South Africa -- Eastern Cape , Effluent quality -- Testing , Sewage disposal plants -- South Africa -- Eastern Cape , Escherichia coli
- Description: Water is an indispensible and yet a difficult resource to be renewed, thus water scarcity has become one of the major challenges faced worldwide, with the Southern regions of Africa being the most impacted and affected, especially the Eastern Cape Province of South Africa where rural communities depend on receiving waterbodies that are often negatively impacted by wastewater final effluents. This present study was conducted between August and December 2010 to assess the physicochemical and microbial qualities of the final effluents of peri-urban and rural communities based wastewater treatment plants in the Eastern Cape Province. The physicochemical parameters were determined on site and in the laboratory, while bacteriological qualities were determined using culture based techniques. The virological qualities were determined by molecular methods using reverse transcriptase polymerase chain reaction for the target RNA virus and the conventional polymerase chain reaction for the target DNA virus. For both wastewater treatment plants, the physicochemical parameters ranged as follows: chemical oxygen demand (5.95-45 mg/L); total dissolved solids (114.5-187.0 mg/L); salinity (0.12-0.20 psu); temperature (14.2-25.7oC); pH (6.0-7.6); nitrate and nitrites (1.55-6.7 mg/L and 0.023-1.15 mg/L respectively); biological oxygen demand (3.5-7.8 mg/L); turbidity (1.49-6.98 NTU); and chlorine residual (0-2.97 mg/L). Feacal indicator bacteria counts ranged as follows: feacal coliforms (0-1.25×104 cfu/100 ml); total coliforms (0-3.95×104 cfu/100 ml); and enterococci (0-5.0×103 cfu/100 ml). xviii Seventy five percent of the rural community based plant and 80 percent of the peri-urban community based plant were positive for coxsackie A virus, while hepatitis A virus was detected in all the rural community based plant 80 percent of the peri-urban community based plant. This study suggests the need for intervention by appropriate regulatory agencies to ensure regular monitoring of the qualities of final effluents of wastewater treatment facilities in the Eastern Cape Province and ensure compliance to established guidelines.
- Full Text:
- Authors: Gusha, Siyabulela Stability
- Date: 2012
- Subjects: Water-supply, Rural -- Health aspects -- South Africa , Pathogenic microorganisms -- South Africa -- Eastern Cape , Water-supply, Rural -- South Africa -- Eastern Cape , Effluent quality -- Testing , Sewage disposal plants -- South Africa -- Eastern Cape , Escherichia coli
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11265 , http://hdl.handle.net/10353/489 , Water-supply, Rural -- Health aspects -- South Africa , Pathogenic microorganisms -- South Africa -- Eastern Cape , Water-supply, Rural -- South Africa -- Eastern Cape , Effluent quality -- Testing , Sewage disposal plants -- South Africa -- Eastern Cape , Escherichia coli
- Description: Water is an indispensible and yet a difficult resource to be renewed, thus water scarcity has become one of the major challenges faced worldwide, with the Southern regions of Africa being the most impacted and affected, especially the Eastern Cape Province of South Africa where rural communities depend on receiving waterbodies that are often negatively impacted by wastewater final effluents. This present study was conducted between August and December 2010 to assess the physicochemical and microbial qualities of the final effluents of peri-urban and rural communities based wastewater treatment plants in the Eastern Cape Province. The physicochemical parameters were determined on site and in the laboratory, while bacteriological qualities were determined using culture based techniques. The virological qualities were determined by molecular methods using reverse transcriptase polymerase chain reaction for the target RNA virus and the conventional polymerase chain reaction for the target DNA virus. For both wastewater treatment plants, the physicochemical parameters ranged as follows: chemical oxygen demand (5.95-45 mg/L); total dissolved solids (114.5-187.0 mg/L); salinity (0.12-0.20 psu); temperature (14.2-25.7oC); pH (6.0-7.6); nitrate and nitrites (1.55-6.7 mg/L and 0.023-1.15 mg/L respectively); biological oxygen demand (3.5-7.8 mg/L); turbidity (1.49-6.98 NTU); and chlorine residual (0-2.97 mg/L). Feacal indicator bacteria counts ranged as follows: feacal coliforms (0-1.25×104 cfu/100 ml); total coliforms (0-3.95×104 cfu/100 ml); and enterococci (0-5.0×103 cfu/100 ml). xviii Seventy five percent of the rural community based plant and 80 percent of the peri-urban community based plant were positive for coxsackie A virus, while hepatitis A virus was detected in all the rural community based plant 80 percent of the peri-urban community based plant. This study suggests the need for intervention by appropriate regulatory agencies to ensure regular monitoring of the qualities of final effluents of wastewater treatment facilities in the Eastern Cape Province and ensure compliance to established guidelines.
- Full Text:
Assessment of the antibacterial properties of n-Hexane extract of Cocos Nucifera and its interactions with some conventional antibiotics
- Authors: Akinyele, Taiwo Adesola
- Date: 2011
- Subjects: Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11245 , http://hdl.handle.net/10353/416 , Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Description: Cocos nucifera belong to the family Aracaceae (palm Family). The English name is coconut and it is used extensively as medicinal remedies against infections such as urinary tract infections, gastro intestinal infections, skin and wound infections. The in vitro antibacterial (including anti-listerial and anti-vibrio) properties as well as the evaluation of the combination potentials of the plant extract with six front-line antibiotics were evaluated in this study using standard procedures. The in vitro anti-listerial properties of the crude aqueous and n-Hexane extract of the husk of Cocos nucifera were carried out against 37 Listeria isolates. Twenty-nine of the test organisms were susceptible to the aqueous extract while thirty were susceptible to the n-Hexane extract both at the screening concentration of 25 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.6 - 5.0 mg/ml. For the aqueous extract, average log reduction in viable cell count ranged between 0.32 Log10 and 4.8 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 2.4 Log10 and 6.2 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. The time-kill characteristics of the two extracts suggest that at higher concentration (2 × MIC) and longer duration of interaction (8 hr), more bacteria were killed. In vitro anti-vibrio and antibacterial properties experiment revealed that of all the 45 vibrio and 25 bacteria strains that was tested, 37 were susceptible to the aqueous extract and 38 to the n-Hexane extract, while 17 were susceptible to the aqueous extract and 21 to the n-Hexane extract. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.3 - 5.0 mg/ml. viii The time kill studies revealed that for the aqueous extract, average log reduction in viable cell count in time kill assay ranged between 0.12 Log10 and 4.2 Log10 CFU/ml after 8 hr interaction at 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 0.56 Log10 and 6.4 Log10 CFU/ml after 8 hr interaction in 1 × MIC and 2 × MIC. In the test for the combination interactions, the checkerboard method revealed synergy of 67% and indifferent of 33%, while the time kill assay detected synergy in 72% and indifferent in 28% of the combinations tested. The synergy detected was not specific to any of the antibiotics or the Gram reaction of the bacteria, and no antagonism was detected. We conclude that the aqueous and n-Hexane extract of the husk of C. nucifera contains potential broad spectrum antibiotics resistance modulating compounds that could be relevant in the treatment of infections caused by these pathogens. In addition, the husk which is being discarded as agro waste will opens up a vista of opportunities for utilization for therapeutic purposes
- Full Text:
- Authors: Akinyele, Taiwo Adesola
- Date: 2011
- Subjects: Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11245 , http://hdl.handle.net/10353/416 , Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Description: Cocos nucifera belong to the family Aracaceae (palm Family). The English name is coconut and it is used extensively as medicinal remedies against infections such as urinary tract infections, gastro intestinal infections, skin and wound infections. The in vitro antibacterial (including anti-listerial and anti-vibrio) properties as well as the evaluation of the combination potentials of the plant extract with six front-line antibiotics were evaluated in this study using standard procedures. The in vitro anti-listerial properties of the crude aqueous and n-Hexane extract of the husk of Cocos nucifera were carried out against 37 Listeria isolates. Twenty-nine of the test organisms were susceptible to the aqueous extract while thirty were susceptible to the n-Hexane extract both at the screening concentration of 25 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.6 - 5.0 mg/ml. For the aqueous extract, average log reduction in viable cell count ranged between 0.32 Log10 and 4.8 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 2.4 Log10 and 6.2 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. The time-kill characteristics of the two extracts suggest that at higher concentration (2 × MIC) and longer duration of interaction (8 hr), more bacteria were killed. In vitro anti-vibrio and antibacterial properties experiment revealed that of all the 45 vibrio and 25 bacteria strains that was tested, 37 were susceptible to the aqueous extract and 38 to the n-Hexane extract, while 17 were susceptible to the aqueous extract and 21 to the n-Hexane extract. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.3 - 5.0 mg/ml. viii The time kill studies revealed that for the aqueous extract, average log reduction in viable cell count in time kill assay ranged between 0.12 Log10 and 4.2 Log10 CFU/ml after 8 hr interaction at 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 0.56 Log10 and 6.4 Log10 CFU/ml after 8 hr interaction in 1 × MIC and 2 × MIC. In the test for the combination interactions, the checkerboard method revealed synergy of 67% and indifferent of 33%, while the time kill assay detected synergy in 72% and indifferent in 28% of the combinations tested. The synergy detected was not specific to any of the antibiotics or the Gram reaction of the bacteria, and no antagonism was detected. We conclude that the aqueous and n-Hexane extract of the husk of C. nucifera contains potential broad spectrum antibiotics resistance modulating compounds that could be relevant in the treatment of infections caused by these pathogens. In addition, the husk which is being discarded as agro waste will opens up a vista of opportunities for utilization for therapeutic purposes
- Full Text:
Bioactivity and phytochemical analysis of Hydnora Africana on some selected bacterial pathogens
- Authors: Nethathe, Bono Bianca
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11247 , http://hdl.handle.net/10353/d1001063 , Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Description: Abstract Medicinal plants have been for long remedies for human diseases because they contain components of therapeutic value. The growing problem of antibiotic resistance by organisms demands the search for novel compounds from plant based sources. The present study was aimed at evaluating the bioactivity and phytochemical analysis of Hydnora africana on clinical and standard strains of Helicobacter pylori (PE 252C and ATCC 43526), Aeromonas hydrophila ATCC 35654, and Staphylococcus aureus NCT 6571 in an effort to identify potential sources of cheap starting materials for the synthesis of new drugs against these strains. Ethyl acetate, acetone, ethanol, methanol, and water crude extracts of H. africana were screened for activity against the test organisms using the agar well diffusion assay. The Minimum Inhibitory Concentration (MIC50) and Minimum Bactericidal Concentration (MBC) of the most potent extracts were determined by the microdilution method, followed by qualitative phytochemical analysis. Results were analyzed statistically by ANOVA one - way test. Different concentrations (200,100, 50mg/mL) of the methanol, acetone, ethanol and ethyl acetate extracts showed activity against S. aureus and A. hydrophila while for H. pylori, only methanol and ethyl acetate extracts were active; water showed no activity for all studied bacterial pathogens. Mean zone diameter of inhibition which ranged from 0-22mm were observed for all test bacterial pathogens and 14-17mm for ciprofloxacin. The activity of methanol and ethyl acetate extracts were statistically significant (P< 0.05) compared to all the other extracts. MIC50 and MBC ranged from 0.078 – 2.5mg/mL, 0.78-25mg/mL respectively for all tested bacterial pathogens. For ciprofloxacin, the MIC50 and MBC ranged from 0.00976 – 0.078mg/mL and 0.098– 0.78mg/mL respectively. There was no statistically significant difference between extracts (methanol, acetone, ethanol, ethyl acetate) and the control antibiotic (ciprofloxacin) (P> 0.05). Qualitative phytochemical analysis confirmed the presence of alkaloids, saponins, steroids, tannins and flavonoids in the methanol, acetone,ethanol and ethyl acetate extracts. The results demonstrate that H. africana may contain compounds with therapeutic potentials which can be lead molecules for semi-synthesis of new drugs.
- Full Text:
- Authors: Nethathe, Bono Bianca
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11247 , http://hdl.handle.net/10353/d1001063 , Helicobacter pylori , Medicinal plants -- South Africa -- Eastern Cape , Microbial sensitivity tests , Herbs -- Therapeutic use -- South Africa -- Eastern Cape , Plants -- Analysis , Staphylococcus aureus , Aeromonas hydrophila , Drug resistance in microorganisms , Plant-pathogen relationships
- Description: Abstract Medicinal plants have been for long remedies for human diseases because they contain components of therapeutic value. The growing problem of antibiotic resistance by organisms demands the search for novel compounds from plant based sources. The present study was aimed at evaluating the bioactivity and phytochemical analysis of Hydnora africana on clinical and standard strains of Helicobacter pylori (PE 252C and ATCC 43526), Aeromonas hydrophila ATCC 35654, and Staphylococcus aureus NCT 6571 in an effort to identify potential sources of cheap starting materials for the synthesis of new drugs against these strains. Ethyl acetate, acetone, ethanol, methanol, and water crude extracts of H. africana were screened for activity against the test organisms using the agar well diffusion assay. The Minimum Inhibitory Concentration (MIC50) and Minimum Bactericidal Concentration (MBC) of the most potent extracts were determined by the microdilution method, followed by qualitative phytochemical analysis. Results were analyzed statistically by ANOVA one - way test. Different concentrations (200,100, 50mg/mL) of the methanol, acetone, ethanol and ethyl acetate extracts showed activity against S. aureus and A. hydrophila while for H. pylori, only methanol and ethyl acetate extracts were active; water showed no activity for all studied bacterial pathogens. Mean zone diameter of inhibition which ranged from 0-22mm were observed for all test bacterial pathogens and 14-17mm for ciprofloxacin. The activity of methanol and ethyl acetate extracts were statistically significant (P< 0.05) compared to all the other extracts. MIC50 and MBC ranged from 0.078 – 2.5mg/mL, 0.78-25mg/mL respectively for all tested bacterial pathogens. For ciprofloxacin, the MIC50 and MBC ranged from 0.00976 – 0.078mg/mL and 0.098– 0.78mg/mL respectively. There was no statistically significant difference between extracts (methanol, acetone, ethanol, ethyl acetate) and the control antibiotic (ciprofloxacin) (P> 0.05). Qualitative phytochemical analysis confirmed the presence of alkaloids, saponins, steroids, tannins and flavonoids in the methanol, acetone,ethanol and ethyl acetate extracts. The results demonstrate that H. africana may contain compounds with therapeutic potentials which can be lead molecules for semi-synthesis of new drugs.
- Full Text:
In-vitro anti-vibrio activities of crude extracts of Garcinia Kola seeds
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
Assessment of bioflocculant production by some marine bacteria isolated from the bottom sediment of Algoa Bay
- Authors: Cosa, Sekelwa
- Date: 2010
- Subjects: Flocculants , Bacteria -- South Africa -- Algoa Bay
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11244 , http://hdl.handle.net/10353/404 , Flocculants , Bacteria -- South Africa -- Algoa Bay
- Description: Several problems concerning the use of conventional synthetic flocculants has necessitated the need for alternative cost effective, safe and efficient bioflocculants from microorganisms inhabiting many environments, particularly those from unusual environments. Hence, this study assessed bioflocculant production by three marine bacteria isolated from the bottom sediment of Algoa Bay in the Eastern Cape Province of South Africa. Analysis of the 16S rDNA sequences led to their identification as Halobacillus sp. Mvuyo, Virgibacillus sp. Rob and Oceanobacillus sp. Pinky. Several factors affecting the production and activity of the bioflocculant(s) were studied. Halobacillus sp. Mvuyo produced bioflocculant optimally with glucose (76%) and ammonium chloride (93%) as sole carbon and nitrogen sources, respectively and at neutral pH and in the presence of Ca2+. On the other hand, Virgibacillus sp. Rob preferred glucose (70.4 %) and iron sulphate (74%) as carbon and nitrogen source respectively; an alkaline pH (12.0) and Fe2+. Oceanobacillus sp. Pinky produced bioflocculant optimally when sucrose (80%) and peptone (72.4 %) were used as carbon and nitrogen source respectively, at neutral pH, and in the presence of Ca2+ cation. The chemical analyses of the partially purified bioflocculants revealed that the bioflocculants produced by Halobacillus sp. Mvuyo and Oceanobacillus sp. Pinky were glycoproteins, while that produced by Virgibacillus sp. Rob was a polysaccharide. We thus conclude that Halobacillus sp. Mvuyo, Virgibacillus sp. Rob and Oceanobacillus sp. Pinky hold promise as producers of new and efficient bioflocculant(s). We recommended development of process conditions for large scale production of the bioflocculants followed by their detailed characterization, as well as pilot scale assessment of the applicability of the purified bioflocculant in water/wastewater treatment and other industrial uses
- Full Text:
- Authors: Cosa, Sekelwa
- Date: 2010
- Subjects: Flocculants , Bacteria -- South Africa -- Algoa Bay
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11244 , http://hdl.handle.net/10353/404 , Flocculants , Bacteria -- South Africa -- Algoa Bay
- Description: Several problems concerning the use of conventional synthetic flocculants has necessitated the need for alternative cost effective, safe and efficient bioflocculants from microorganisms inhabiting many environments, particularly those from unusual environments. Hence, this study assessed bioflocculant production by three marine bacteria isolated from the bottom sediment of Algoa Bay in the Eastern Cape Province of South Africa. Analysis of the 16S rDNA sequences led to their identification as Halobacillus sp. Mvuyo, Virgibacillus sp. Rob and Oceanobacillus sp. Pinky. Several factors affecting the production and activity of the bioflocculant(s) were studied. Halobacillus sp. Mvuyo produced bioflocculant optimally with glucose (76%) and ammonium chloride (93%) as sole carbon and nitrogen sources, respectively and at neutral pH and in the presence of Ca2+. On the other hand, Virgibacillus sp. Rob preferred glucose (70.4 %) and iron sulphate (74%) as carbon and nitrogen source respectively; an alkaline pH (12.0) and Fe2+. Oceanobacillus sp. Pinky produced bioflocculant optimally when sucrose (80%) and peptone (72.4 %) were used as carbon and nitrogen source respectively, at neutral pH, and in the presence of Ca2+ cation. The chemical analyses of the partially purified bioflocculants revealed that the bioflocculants produced by Halobacillus sp. Mvuyo and Oceanobacillus sp. Pinky were glycoproteins, while that produced by Virgibacillus sp. Rob was a polysaccharide. We thus conclude that Halobacillus sp. Mvuyo, Virgibacillus sp. Rob and Oceanobacillus sp. Pinky hold promise as producers of new and efficient bioflocculant(s). We recommended development of process conditions for large scale production of the bioflocculants followed by their detailed characterization, as well as pilot scale assessment of the applicability of the purified bioflocculant in water/wastewater treatment and other industrial uses
- Full Text:
Prevalence of listeria pathogens in effluents of some wastewater treatment facilities in the Eastern Cape province of South Africa
- Odjadjare, Emmanuel Erufuare Onogwuwhenya
- Authors: Odjadjare, Emmanuel Erufuare Onogwuwhenya
- Date: 2010
- Subjects: Listeria -- South Africa -- Eastern Cape , Sewage -- Purification -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11264 , http://hdl.handle.net/10353/246 , Listeria -- South Africa -- Eastern Cape , Sewage -- Purification -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Description: Wastewater discharges may contain health compromising pathogens and carcinogenic and/or chemical substances that could compromise the public health and impact negatively on the environment. The present study was conducted between August 2007 and July 2008 to evaluate the Listeria abundance (as free-living and plankton associated species) and physicochemical qualities of the final effluents of three wastewater treatment facilities in the Eastern Cape Province of South Africa selected to represent typical urban, peri-urban and rural communities and the impact of the discharged final effluents on their respective receiving watershed, as well as to elucidated the in vitro antibiotic susceptibilities and resistance genes profile of Listeria species isolated from the final effluents. The suitability of the secondary effluent of the urban treatment facility (as a case study) for use in agriculture and aquaculture with reference to recommended standards was also determined. Wastewater samples were collected from the raw sewage, secondary effluent, final treated effluent, discharge point, 500 m upstream discharge point, and 500 m downstream discharge point from all three locations on a monthly basis throughout the study period. Listeria abundance in the final effluents and the receiving watersheds varied between 2.9× 100 and 3.52 × 105cfu/ml across the sampled locations. Free-living listerial density across the sampled locations ranged between 0 and 3.2 × 103cfu/ml while counts of Listeria species attached to large (180 μm) planktons varied from 0 to 1.58 × 105 cfu/ml and those of the 60 and 20 μm categories were in the range of 0 to 1.32 × 103 cfu/ml and 0 to 2.82 × 105 cfu/ml respectively. Listeria abundance did not vary significantly with location and season; there was however, significant (P < 0.05; P < 0.01) variance in Listeria abundance with plankton sizes across the locations. Free-living Listeria species were more abundant in the rural and urban xii communities than plankton attached Listeria species; whereas the reverse was the case in the peri-urban community. Prevalence of Listeria in terms of total counts was 100 percent across all sampled locations. Free-living Listeria species showed prevalence ranging from 84-96 percent across the sampling locations; while Listeria species attached to large (180 μm) planktons exhibited prevalence ranging from 75 percent to 90 percent. The prevalence of medium-sized (60 μm) plankton associated Listeria species varied between 58 percent and 92.5 percent; whereas those of Listeria species attached to small (20 μm) planktons ranged from 65-100 percent across all three communities. Listeria prevalence was generally a reflection of the turbidity of the water system, with free-living Listeria species being more prevalent than plankton associated cells in the relatively less turbid rural and urban waters compared to the more turbid peri-urban waters where plankton attached cells were more prevalent in comparison with their free living counterparts The final treated effluent quality fell short of recommended standards for turbidity, chemical oxygen demand and phosphate across all three communities. In addition, the final effluent of the rural treatment plant also fell short of recommended standard for NO3, while that of the urban treatment plant did not comply with acceptable limits for dissolved oxygen and nitrite. Other physicochemical parameters were compliant with set standards after treatment. An inverse relationship was observed between chlorine residual and listerial density across the sampled facilities; the effect of chlorine was however not enough to eliminate the pathogen from the water systems. At the urban treatment plant and its receiving watershed, pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P < 0.05; P < 0.01). Salinity also varied significantly with sampling point (P < 0.01), while COD and nitrite varied significantly with season (P < 0.05). Although, the treated effluent fell within recommended water quality standard for pH, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. Whereas the microbial quality of the secondary treated effluent at this (urban) facility fell short of recommended standard after secondary treatment, its physicochemical quality were generally compliant with recommended standards for reuse wastewater in agriculture and aquaculture. Listeria pathogens isolated from effluents of the rural wastewater facility were sensitive to 11 (55 percent) of the 20 test antibiotics, and showed varying (7-71 percent) levels of resistance to 8 antibiotics; whereas those isolated from the peri-urban community showed sensitivity to 6 (30 percent) of the 20 test antibiotics, and varying (6-94 percent) levels of resistance to 12 antibiotics; while the urban effluent isolates were sensitive to 3 (15 percent) of the 20 test antibiotics, and showed varying (4.5-91 percent) levels of resistance to 17 antibiotics. Multiple antibiotic resistances involving 78.5-100 percent of isolates and antibiotics combination ranging from 2-10 antibiotics was observed across the sampled locations. Penicillin G and ampicillin showed remarkably high (64-91 percent) phenotypic resistance across the three sampled facilities. Other antibiotics, to which isolates showed significant resistance, were linezolid (22-88 percent); erythromycin (43-94 percent) and sulphamethoxazole (7-94 percent). Two of the 14 Listeria strains isolated from the rural effluents were positive for ereA and sul1 antibiotic resistance genes; while sulII genes were detected in five of the 23 Listeria isolates from the urban effluent and none was detected in isolates from the peri-urban community. The presence of antimicrobial resistance genes in the isolates did not correlate with phenotypic antibiotic resistance. The current study demonstrated that Listeria pathogens easily survived the activated sludge treatment process as free-living and plankton attached entities and suggests that municipal wastewater treatment plants are a significant source of multiple resistant Listeria pathogens in the South African aquatic milieu. While the physicochemical quality of the urban final effluent suggests that it is a major source of pollution to the receiving watershed, the secondary effluent quality demonstrated a great potential for use in agriculture and aquaculture.
- Full Text:
- Authors: Odjadjare, Emmanuel Erufuare Onogwuwhenya
- Date: 2010
- Subjects: Listeria -- South Africa -- Eastern Cape , Sewage -- Purification -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11264 , http://hdl.handle.net/10353/246 , Listeria -- South Africa -- Eastern Cape , Sewage -- Purification -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Description: Wastewater discharges may contain health compromising pathogens and carcinogenic and/or chemical substances that could compromise the public health and impact negatively on the environment. The present study was conducted between August 2007 and July 2008 to evaluate the Listeria abundance (as free-living and plankton associated species) and physicochemical qualities of the final effluents of three wastewater treatment facilities in the Eastern Cape Province of South Africa selected to represent typical urban, peri-urban and rural communities and the impact of the discharged final effluents on their respective receiving watershed, as well as to elucidated the in vitro antibiotic susceptibilities and resistance genes profile of Listeria species isolated from the final effluents. The suitability of the secondary effluent of the urban treatment facility (as a case study) for use in agriculture and aquaculture with reference to recommended standards was also determined. Wastewater samples were collected from the raw sewage, secondary effluent, final treated effluent, discharge point, 500 m upstream discharge point, and 500 m downstream discharge point from all three locations on a monthly basis throughout the study period. Listeria abundance in the final effluents and the receiving watersheds varied between 2.9× 100 and 3.52 × 105cfu/ml across the sampled locations. Free-living listerial density across the sampled locations ranged between 0 and 3.2 × 103cfu/ml while counts of Listeria species attached to large (180 μm) planktons varied from 0 to 1.58 × 105 cfu/ml and those of the 60 and 20 μm categories were in the range of 0 to 1.32 × 103 cfu/ml and 0 to 2.82 × 105 cfu/ml respectively. Listeria abundance did not vary significantly with location and season; there was however, significant (P < 0.05; P < 0.01) variance in Listeria abundance with plankton sizes across the locations. Free-living Listeria species were more abundant in the rural and urban xii communities than plankton attached Listeria species; whereas the reverse was the case in the peri-urban community. Prevalence of Listeria in terms of total counts was 100 percent across all sampled locations. Free-living Listeria species showed prevalence ranging from 84-96 percent across the sampling locations; while Listeria species attached to large (180 μm) planktons exhibited prevalence ranging from 75 percent to 90 percent. The prevalence of medium-sized (60 μm) plankton associated Listeria species varied between 58 percent and 92.5 percent; whereas those of Listeria species attached to small (20 μm) planktons ranged from 65-100 percent across all three communities. Listeria prevalence was generally a reflection of the turbidity of the water system, with free-living Listeria species being more prevalent than plankton associated cells in the relatively less turbid rural and urban waters compared to the more turbid peri-urban waters where plankton attached cells were more prevalent in comparison with their free living counterparts The final treated effluent quality fell short of recommended standards for turbidity, chemical oxygen demand and phosphate across all three communities. In addition, the final effluent of the rural treatment plant also fell short of recommended standard for NO3, while that of the urban treatment plant did not comply with acceptable limits for dissolved oxygen and nitrite. Other physicochemical parameters were compliant with set standards after treatment. An inverse relationship was observed between chlorine residual and listerial density across the sampled facilities; the effect of chlorine was however not enough to eliminate the pathogen from the water systems. At the urban treatment plant and its receiving watershed, pH, temperature, EC, turbidity, TDS, DO, and nitrate varied significantly with season and sampling point (P < 0.05; P < 0.01). Salinity also varied significantly with sampling point (P < 0.01), while COD and nitrite varied significantly with season (P < 0.05). Although, the treated effluent fell within recommended water quality standard for pH, TDS, nitrate and nitrite, it fell short of stipulated standards for other parameters. Whereas the microbial quality of the secondary treated effluent at this (urban) facility fell short of recommended standard after secondary treatment, its physicochemical quality were generally compliant with recommended standards for reuse wastewater in agriculture and aquaculture. Listeria pathogens isolated from effluents of the rural wastewater facility were sensitive to 11 (55 percent) of the 20 test antibiotics, and showed varying (7-71 percent) levels of resistance to 8 antibiotics; whereas those isolated from the peri-urban community showed sensitivity to 6 (30 percent) of the 20 test antibiotics, and varying (6-94 percent) levels of resistance to 12 antibiotics; while the urban effluent isolates were sensitive to 3 (15 percent) of the 20 test antibiotics, and showed varying (4.5-91 percent) levels of resistance to 17 antibiotics. Multiple antibiotic resistances involving 78.5-100 percent of isolates and antibiotics combination ranging from 2-10 antibiotics was observed across the sampled locations. Penicillin G and ampicillin showed remarkably high (64-91 percent) phenotypic resistance across the three sampled facilities. Other antibiotics, to which isolates showed significant resistance, were linezolid (22-88 percent); erythromycin (43-94 percent) and sulphamethoxazole (7-94 percent). Two of the 14 Listeria strains isolated from the rural effluents were positive for ereA and sul1 antibiotic resistance genes; while sulII genes were detected in five of the 23 Listeria isolates from the urban effluent and none was detected in isolates from the peri-urban community. The presence of antimicrobial resistance genes in the isolates did not correlate with phenotypic antibiotic resistance. The current study demonstrated that Listeria pathogens easily survived the activated sludge treatment process as free-living and plankton attached entities and suggests that municipal wastewater treatment plants are a significant source of multiple resistant Listeria pathogens in the South African aquatic milieu. While the physicochemical quality of the urban final effluent suggests that it is a major source of pollution to the receiving watershed, the secondary effluent quality demonstrated a great potential for use in agriculture and aquaculture.
- Full Text:
Surveillance of invasive vibro species in discharged aqueous efflents of wastewater treatment plants in the Eastern Cape province of South Africa
- Authors: Igbinosa, Etinosa Ogbomoede
- Date: 2010
- Subjects: Vibrio -- South Africa -- Eastern Cape , Water -- Fluoridation -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11267 , http://hdl.handle.net/10353/245 , Vibrio -- South Africa -- Eastern Cape , Water -- Fluoridation -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Description: Vibrio infections remain a serious threat to public health. In the last decade, Vibrio disease outbreaks have created a painful awareness of the personal, economic, societal, and public health costs associated with the impact of contaminated water in the aquatic milieu. This study was therefore designed to assess the prevalence of Vibrio pathogens in the final effluents of wastewater treatment plants (WWTPs) in the Eastern Cape Province, as well as their abilities to survive the treatment processes of the activated sludge system either as free cells or as plankton-associated entities in relation to the physicochemical qualities of the effluents. Three wastewater treatment facilities were selected to represent typical urban, sub-urban and rural communities, and samples were collected monthly from August 2007 to July 2008 from the final effluent, discharge point, 500 meter upstream and downstream of the discharge points and analysed for physicochemical parameters, Vibrio pathogens prevalence and their antibiogram characteristics using both culture based and molecular techniques. Physicochemical parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), nitrate, nitrite and orthophosphate levels. Unacceptably high levels of the assayed parameters were observed in many cases for COD (<10 - 1180 mg/l), nitrate (0.08 - 13.14 mg NO3- as N/l), nitrite (0.06 - 6.78 mg NO2- as N/l), orthophosphate (0.07-4.81 mg PO43- as P/l), DO (1.24 - 11.22 mg/l) and turbidity (2.04 -159.06 NTU). Temperature, COD and nitrite varied significantly with season (P < 0.05), while pH, EC, salinity, TDS, COD, and nitrate all varied significantly with sampling site (P < 0.01; P < 0.05). In the rural wastewater treatment facility, free-living Vibrio densities varied from 0 to 3.45 × 101 cfu ml-1, while the plankton-associated Vibrio densities vary with plankton sizes as follows: 180 μm (0 – 4.50 × 103 cfu ml-1); 60 μm (0 – 4.86 × 103 cfu ml-1); 20 μm (0 – 1.9 × 105 cfu ml-1). The seasonal variations in the Vibrio densities in the 180 and 60 μm plankton size samples were significant (P < 0.05), while the 20 μm plankton size and free-living vibrios densities were not. Molecular confirmation of the presumptive vibrios isolates revealed V. fluvialis (36.5 percent), as the predominant species, followed by V. vulnificus (34.6 percent), and V. parahaemolyticus (23.1 percent), and V. metschnikovii (5.8 percent) (detected using only API 20 NE), suggesting high incidence of pathogenic Vibrio species in the final effluent of the wastewater facility. Correlation analysis suggested that the concentration of Vibrio species correlated negatively with salinity and temperature (P < 0.001 and P < 0.002 respectively) as well as with pH and turbidity (P < 0.001), in the final effluent. Population density of total Vibrio ranged from 2.1 × 101 to 4.36 × 104 cfu ml-1 and from 2.80 ×101 to 1.80 × 105 cfu ml-1 for the sub-urban and urban communities treatment facilities respectively. Vibrio species associated with 180 μm, 60 μm, and 20 μm plankton sizes, were observed at densities of 0 - 1.36 × 103 cfu ml-1, 0 - 8.40 × 102 cfu ml-1 and 0 - 6.80 × 102 cfu ml-1 respectively at the sub-urban community‘s WWTP. In the urban community, counts of culturable vibrios ranged from 0 - 2.80 × 102 cfu ml-1 (180 μm); 0 - 6.60 × 102 cfu ml-1 (60 μm) and 0 -1.80 × 103 cfu ml-1 (20 μm). Abundance of free-living Vibrio species varied between 0 and the orders of 102 and 103 cfu ml-1 in the sub-urban and urban communities WWTPs respectively. Molecular confirmation of the presumptive vibrios isolates revealed the presence of V. fluvialis (41.38 percent), V. vulnificus (34.48 percent), and V. parahaemolyticus (24.14 percent) in the sub-urban community effluents. In the urban community V. fluvialis (40 percent), V. vulnificus (36 percent), and V. parahaemolyticus (24 percent) were detected. There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, while Vibrio species abundance correlated positively with temperature (r = 0.565; P < 0.01), salinity and dissolved oxygen (P < 0.05). Turbidity and pH showed significant seasonal variation (P < 0.05) in both locations. The Vibrio strains showed the typical multi-antibiotic-resistance of an SXT element. They were resistant to sulfamethoxazole (Sul), trimethoprim (Tmp), cotrimoxazole (Cot), chloramphenicol (Chl) and streptomycin (Str), as well as other antibiotics such as ampicillin (Amp), penicillin (Pen), erythromycin (Ery), tetracycline (Tet), nalidixic acid (Nal), and gentamicin (Gen). The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; tetA, strB, floR, sul2 blaP1, for tetracycline, streptomycin, chloramphenicol, sulfamethoxazole and β-lactams respectively. A number of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. This study revealed that there was an adverse impact on the physicochemical characteristics of the receiving watershed as a result of the discharge of inadequately treated effluents from the wastewater treatment facilities. The occurrence of Vibrio species as plankton-associated entities confirms the role of plankton as potential reservoir for this pathogen. Also the treated final effluents are reservoirs of various antibiotics resistance genes. This could pose significant health and environmental risk to the biotic component of the environment including communities that rely on the receiving water for domestic purposes and may also affect the health status of the aquatic milieu in the receiving water. There is need for consistent monitoring programme by appropriate regulatory agencies to ensure compliance of the wastewater treatment facilities to regulatory effluent quality standards.
- Full Text:
- Authors: Igbinosa, Etinosa Ogbomoede
- Date: 2010
- Subjects: Vibrio -- South Africa -- Eastern Cape , Water -- Fluoridation -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11267 , http://hdl.handle.net/10353/245 , Vibrio -- South Africa -- Eastern Cape , Water -- Fluoridation -- South Africa -- Eastern Cape , Water -- Pollution -- South Africa -- Eastern Cape , Effluent quality -- South Africa -- Eastern Cape , Water -- Purification -- South Africa -- Eastern Cape
- Description: Vibrio infections remain a serious threat to public health. In the last decade, Vibrio disease outbreaks have created a painful awareness of the personal, economic, societal, and public health costs associated with the impact of contaminated water in the aquatic milieu. This study was therefore designed to assess the prevalence of Vibrio pathogens in the final effluents of wastewater treatment plants (WWTPs) in the Eastern Cape Province, as well as their abilities to survive the treatment processes of the activated sludge system either as free cells or as plankton-associated entities in relation to the physicochemical qualities of the effluents. Three wastewater treatment facilities were selected to represent typical urban, sub-urban and rural communities, and samples were collected monthly from August 2007 to July 2008 from the final effluent, discharge point, 500 meter upstream and downstream of the discharge points and analysed for physicochemical parameters, Vibrio pathogens prevalence and their antibiogram characteristics using both culture based and molecular techniques. Physicochemical parameters measured include pH, temperature, electrical conductivity, salinity, turbidity, total dissolved solid (TDS), dissolved oxygen (DO), chemical oxygen demand (COD), nitrate, nitrite and orthophosphate levels. Unacceptably high levels of the assayed parameters were observed in many cases for COD (<10 - 1180 mg/l), nitrate (0.08 - 13.14 mg NO3- as N/l), nitrite (0.06 - 6.78 mg NO2- as N/l), orthophosphate (0.07-4.81 mg PO43- as P/l), DO (1.24 - 11.22 mg/l) and turbidity (2.04 -159.06 NTU). Temperature, COD and nitrite varied significantly with season (P < 0.05), while pH, EC, salinity, TDS, COD, and nitrate all varied significantly with sampling site (P < 0.01; P < 0.05). In the rural wastewater treatment facility, free-living Vibrio densities varied from 0 to 3.45 × 101 cfu ml-1, while the plankton-associated Vibrio densities vary with plankton sizes as follows: 180 μm (0 – 4.50 × 103 cfu ml-1); 60 μm (0 – 4.86 × 103 cfu ml-1); 20 μm (0 – 1.9 × 105 cfu ml-1). The seasonal variations in the Vibrio densities in the 180 and 60 μm plankton size samples were significant (P < 0.05), while the 20 μm plankton size and free-living vibrios densities were not. Molecular confirmation of the presumptive vibrios isolates revealed V. fluvialis (36.5 percent), as the predominant species, followed by V. vulnificus (34.6 percent), and V. parahaemolyticus (23.1 percent), and V. metschnikovii (5.8 percent) (detected using only API 20 NE), suggesting high incidence of pathogenic Vibrio species in the final effluent of the wastewater facility. Correlation analysis suggested that the concentration of Vibrio species correlated negatively with salinity and temperature (P < 0.001 and P < 0.002 respectively) as well as with pH and turbidity (P < 0.001), in the final effluent. Population density of total Vibrio ranged from 2.1 × 101 to 4.36 × 104 cfu ml-1 and from 2.80 ×101 to 1.80 × 105 cfu ml-1 for the sub-urban and urban communities treatment facilities respectively. Vibrio species associated with 180 μm, 60 μm, and 20 μm plankton sizes, were observed at densities of 0 - 1.36 × 103 cfu ml-1, 0 - 8.40 × 102 cfu ml-1 and 0 - 6.80 × 102 cfu ml-1 respectively at the sub-urban community‘s WWTP. In the urban community, counts of culturable vibrios ranged from 0 - 2.80 × 102 cfu ml-1 (180 μm); 0 - 6.60 × 102 cfu ml-1 (60 μm) and 0 -1.80 × 103 cfu ml-1 (20 μm). Abundance of free-living Vibrio species varied between 0 and the orders of 102 and 103 cfu ml-1 in the sub-urban and urban communities WWTPs respectively. Molecular confirmation of the presumptive vibrios isolates revealed the presence of V. fluvialis (41.38 percent), V. vulnificus (34.48 percent), and V. parahaemolyticus (24.14 percent) in the sub-urban community effluents. In the urban community V. fluvialis (40 percent), V. vulnificus (36 percent), and V. parahaemolyticus (24 percent) were detected. There was no significant correlation between Vibrio abundance and season, either as free-living or plankton-associated entities, while Vibrio species abundance correlated positively with temperature (r = 0.565; P < 0.01), salinity and dissolved oxygen (P < 0.05). Turbidity and pH showed significant seasonal variation (P < 0.05) in both locations. The Vibrio strains showed the typical multi-antibiotic-resistance of an SXT element. They were resistant to sulfamethoxazole (Sul), trimethoprim (Tmp), cotrimoxazole (Cot), chloramphenicol (Chl) and streptomycin (Str), as well as other antibiotics such as ampicillin (Amp), penicillin (Pen), erythromycin (Ery), tetracycline (Tet), nalidixic acid (Nal), and gentamicin (Gen). The antibiotic resistance genes detected includes dfr18 and dfrA1 for trimethoprim; tetA, strB, floR, sul2 blaP1, for tetracycline, streptomycin, chloramphenicol, sulfamethoxazole and β-lactams respectively. A number of these genes were only recently described from clinical isolates, demonstrating genetic exchange between clinical and environmental Vibrio species. This study revealed that there was an adverse impact on the physicochemical characteristics of the receiving watershed as a result of the discharge of inadequately treated effluents from the wastewater treatment facilities. The occurrence of Vibrio species as plankton-associated entities confirms the role of plankton as potential reservoir for this pathogen. Also the treated final effluents are reservoirs of various antibiotics resistance genes. This could pose significant health and environmental risk to the biotic component of the environment including communities that rely on the receiving water for domestic purposes and may also affect the health status of the aquatic milieu in the receiving water. There is need for consistent monitoring programme by appropriate regulatory agencies to ensure compliance of the wastewater treatment facilities to regulatory effluent quality standards.
- Full Text:
Antibacterial properties of the methanol extract of helichrysum pedunculatum
- Authors: Ncube, Nqobile S
- Date: 2008
- Subjects: Medicinal plants , Methanol , Helichrysum
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11241 , http://hdl.handle.net/10353/461 , Medicinal plants , Methanol , Helichrysum
- Description: The methanol extract of Helichrisum pedunculatum was screened for antimicrobial activity up to a concentration of 5 mg/ml using the agar dilution technique. A number of test bacterial isolates, comprising both Gram negative and Gram positive organisms were susceptible to the crude extract of the plant. The minimum inhibitory concentrations (MICs) of the extract ranged between 1 and 5 mg/ml for the susceptible organisms. The MICs of the selected antibiotics, chloramphenicol and penicillin, ranged between 2 and 4 mg/L, and 2 and 32 mg/L respectively against Bacillus cereus, Proteus vulgaris and Staphylococcus aureus OKOH1. Bactericidal activity was determined by the time kill assay. The methanol extract of the plant was not bactericidal at 1 × MIC for B. cereus, P. vulgaris and Staph. aureus OKOH1. At 2 × MIC the extract was bacteriostatic against B. cereus but bactericidal against P. vulgaris and Staph. aureus OKOH1. Combination studies were done at 1/2 × MIC, 1 × MIC and 2 × MIC of the plant extract with 1 × MIC of the antibiotics. Combinations of the plant extract and chloramphenicol resulted in mostly indifferent interactions against P. vulgaris and Staph. aureus OKOH1 but synergistic interactions at higher concentration of the plant extract for B. cereus. Penicillin combinations gave synergistic interactions at lower concentrations of the plant for P.vulgaris and Staph. aureus OKOH1 but was mostly indifferent for B. cereus.
- Full Text:
- Authors: Ncube, Nqobile S
- Date: 2008
- Subjects: Medicinal plants , Methanol , Helichrysum
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11241 , http://hdl.handle.net/10353/461 , Medicinal plants , Methanol , Helichrysum
- Description: The methanol extract of Helichrisum pedunculatum was screened for antimicrobial activity up to a concentration of 5 mg/ml using the agar dilution technique. A number of test bacterial isolates, comprising both Gram negative and Gram positive organisms were susceptible to the crude extract of the plant. The minimum inhibitory concentrations (MICs) of the extract ranged between 1 and 5 mg/ml for the susceptible organisms. The MICs of the selected antibiotics, chloramphenicol and penicillin, ranged between 2 and 4 mg/L, and 2 and 32 mg/L respectively against Bacillus cereus, Proteus vulgaris and Staphylococcus aureus OKOH1. Bactericidal activity was determined by the time kill assay. The methanol extract of the plant was not bactericidal at 1 × MIC for B. cereus, P. vulgaris and Staph. aureus OKOH1. At 2 × MIC the extract was bacteriostatic against B. cereus but bactericidal against P. vulgaris and Staph. aureus OKOH1. Combination studies were done at 1/2 × MIC, 1 × MIC and 2 × MIC of the plant extract with 1 × MIC of the antibiotics. Combinations of the plant extract and chloramphenicol resulted in mostly indifferent interactions against P. vulgaris and Staph. aureus OKOH1 but synergistic interactions at higher concentration of the plant extract for B. cereus. Penicillin combinations gave synergistic interactions at lower concentrations of the plant for P.vulgaris and Staph. aureus OKOH1 but was mostly indifferent for B. cereus.
- Full Text:
Parasite prevalence, nutritionally-related blood metabolites and pre-slaughter stress response in Nguni, Bonsmara and Angus steers raised on veld
- Authors: Ndlovu, Thulile
- Date: 2008
- Subjects: Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11258 , http://hdl.handle.net/10353/73 , Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Description: The effects of month on body weight, body condition scores, internal parasite prevalence and on nutritionally related blood metabolites were studied in Angus, Bonsmara and Nguni steers raised on sweet veld. Pre-slaughter stress was also determined using catecholamines, cortisol, dopamine, packed cell volume and serum creatinine levels. The blood chemical constituents evaluated included glucose, cholesterol, total protein, creatinine, urea, globulin, albumin, calcium, phosphorus, magnesium, aspartate amino transferase (AST), alkaline phosphatase (ALP) and creatinine kinase (CK). The Nguni steers maintained their body condition throughout the study period whereas Angus steers had the least body condition scores. Parasite levels were high during the rainy season and low during the dry season. The predominant internal parasites were Haemonchus (39.3 percent), Trichostrongylus (37.8 percent), Cooperia pectinita (25.5 percent), Fasciola gigantica (16.3 percent) and Ostertagia ostertagi (11.2 percent). The Nguni had the least parasite infestation levels and had high PCV levels. Nguni had higher levels of cholesterol and glucose (2.86 and 4mmol/l, respectively) than the other two breeds. Nguni and Bonsmara steers had higher (P<0.05) mineral levels. There were significant breed and month differences for glucose, cholesterol, creatinine, calcium, albumin, phosphorus, albumin-globulin ratio and ALP levels. Bonsmara was more susceptible to transport and pre-slaughter stress as it had the highest (P<0.05) levels of adrenalin (10.8nmol/mol), noradrenalin (9.7nmol/mol) and dopamine (14.8nmol/mol) levels, whereas the Nguni had the least levels of adrenalin (6.5nmol/mol), noradrenalin (4.6nmol/mol) and dopamine (4nmol/mol) levels. In conclusion, Nguni steers were better adapted to the local environmental conditions
- Full Text:
- Authors: Ndlovu, Thulile
- Date: 2008
- Subjects: Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11258 , http://hdl.handle.net/10353/73 , Parasites , Nguni cattle , Bonsmara cattle , Metabolites , Slaughtering and slaughter-houses , Aberdeen -- Angus cattle
- Description: The effects of month on body weight, body condition scores, internal parasite prevalence and on nutritionally related blood metabolites were studied in Angus, Bonsmara and Nguni steers raised on sweet veld. Pre-slaughter stress was also determined using catecholamines, cortisol, dopamine, packed cell volume and serum creatinine levels. The blood chemical constituents evaluated included glucose, cholesterol, total protein, creatinine, urea, globulin, albumin, calcium, phosphorus, magnesium, aspartate amino transferase (AST), alkaline phosphatase (ALP) and creatinine kinase (CK). The Nguni steers maintained their body condition throughout the study period whereas Angus steers had the least body condition scores. Parasite levels were high during the rainy season and low during the dry season. The predominant internal parasites were Haemonchus (39.3 percent), Trichostrongylus (37.8 percent), Cooperia pectinita (25.5 percent), Fasciola gigantica (16.3 percent) and Ostertagia ostertagi (11.2 percent). The Nguni had the least parasite infestation levels and had high PCV levels. Nguni had higher levels of cholesterol and glucose (2.86 and 4mmol/l, respectively) than the other two breeds. Nguni and Bonsmara steers had higher (P<0.05) mineral levels. There were significant breed and month differences for glucose, cholesterol, creatinine, calcium, albumin, phosphorus, albumin-globulin ratio and ALP levels. Bonsmara was more susceptible to transport and pre-slaughter stress as it had the highest (P<0.05) levels of adrenalin (10.8nmol/mol), noradrenalin (9.7nmol/mol) and dopamine (14.8nmol/mol) levels, whereas the Nguni had the least levels of adrenalin (6.5nmol/mol), noradrenalin (4.6nmol/mol) and dopamine (4nmol/mol) levels. In conclusion, Nguni steers were better adapted to the local environmental conditions
- Full Text:
Prevalence of Escherichia coli O157:H7 in water and meat and meat products and vegetables sold in the Eastern Cape Province of South Africa and its impact on the diarrhoeic conditions of HIV/AIDS patients
- Authors: Abong'o, Benard Omondi
- Date: 2008
- Subjects: Foodborne diseases , Diarrhea , Escherichia coli , HIV infections , AIDS (Disease) , Bacterial diseases
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11263 , http://hdl.handle.net/10353/87 , Foodborne diseases , Diarrhea , Escherichia coli , HIV infections , AIDS (Disease) , Bacterial diseases
- Description: Water and food borne Escherichia coli O157:H7 could be one of the pathogens posing high health risk to patients suffering from Acquired Immunodeficiency Syndrome (AIDS) because of its incrimination in diarrhoea cases in AIDS patients. The present study, which was conducted between March 2005 and August 2006, investigated the prevalence of E. coli O157:H7 in water, meat and meat products and vegetables and its impact on diarrhoeic conditions of confirmed and non-confirmed HIV/AIDS patients in the Amathole District in the Eastern Cape Province of South Africa. The water samples used in the study were obtained from stand pipes supplying treated drinking water to communities residing in Fort Beaufort, Alice, Dimbaza and Mdantsane whereas borehole waters were sampled from Ngwenya and Kwasaki. The meat and meat products and vegetable samples were purchased from shops, butcheries, supermarkets and open air markets in Fort Beaufort, Alice and Mdantsane. The stool swabs used in the study were obtained from HIV/AIDS and outpatient clinics at Frere Hospital in East London. A total of 180 each of water, meat and meat products and vegetable samples and another 360 stool samples were analyzed for E. coli O157:H7. Presumptive E. coli O157 was isolated from the samples by culture-based methods and confirmed using Polymerase Chain Reaction techniques. Anti-biogram as well as risk assessment were also carried out using standard methods. The viable counts of presumptive E. coli O157 for water samples ranged between 3.3 × 104 and 1.71 × 105 CFU/ml, and between 1.8 × 104 and 5.04 × 106 CFU/g for meat and meat products, whereas those for vegetables ranged between 1.3 × 103 and 1.6 × 106 CFU/g. The counts of presumptive E. coli O157 for the water and vegetable samples were not significantly different whereas those for meat and meat products were found to be significantly different (P ≤ 0.05). The prevalence rates of presumptive E coli O157 in meat and meat products was 35.55 percent (64/180), and 25.55 percent (46/180) and 21.66 percent (39/180) for water and vegetables respectively. Prevalence of presumptive E. coli O157 in the stool samples of HIV/AIDS patients was 36.39 percent (131/360), of which 56.5 percent (74/131) and 43.5 percent (57/131) were from stools of confirmed and non-confirmed HIV/AIDS patients, respectively. Molecular analysis of representative presumptive E. coli O157 indicated that 10.29 percent (4/39) of vegetables; 14.81 percent (4/27) of water and 38.46 percent (5/13) of meat and meat products carried E. coli O157:H7. Also 36 percent (9/25) and 17.24 percent (5/29) of the stool samples were positive for E. coli O157:H7. Antimicrobial susceptibility profile revealed that all of the E. coli O157:H7 isolated from water, meat and meat products and vegetables as well as those isolated from stools of confirmed and non-confirmed HIV/AIDS patients were resistant (R) to gentamycin and erythromycin. However, 75 percent (20/27) of these isolates were resistant (R) to ampicillin and tetracycline whereas approximately 25 percent (6/27) were resistant (R) to nalidixic acid, ceftriaxone, and chloramphenicol. All the isolates (27/27) were susceptible (S) to amikacin. Probability of risk of E. coli O157:H7 infection was high for confirmed HIV/AIDS patients than for the non-confirmed HIV/AIDS patients. Estimated probability of risk of E. coli O157:H7 due to ingestion of water was 1.00 for 100 confirmed and non-confirmed HIV/AIDS patients. Risk due to meat and meat products was estimated at 0.27 and 0.20 and for vegetables at 0.21 and 0.15 per 100 confirmed and non-confirmed HIV/AIDS patients. The findings of this study predicted a possible link between E. coli O157:H7 isolated from drinking water, meat and meat products and vegetables and diarrhoeic conditions in both confirmed and non-confirmed HIV/AIDS patients, and concludes that confirmed HIV/AIDS patients can be at higher risk of contracting water and food borne E. coli O157:H7 than nonconfirmed HIV/AIDS patients. It is thus recommended that proper water treatment and food handling, maximum food and water safety and sanitation as well as personal body hygiene should be maintained, in order to prevent E. coli O157:H7 infections. Education initiatives and active surveillance of E. coli O157:H7 should be taken by all the stake-holders working directly or indirectly towards ensuring enduring sound public health.
- Full Text:
- Authors: Abong'o, Benard Omondi
- Date: 2008
- Subjects: Foodborne diseases , Diarrhea , Escherichia coli , HIV infections , AIDS (Disease) , Bacterial diseases
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11263 , http://hdl.handle.net/10353/87 , Foodborne diseases , Diarrhea , Escherichia coli , HIV infections , AIDS (Disease) , Bacterial diseases
- Description: Water and food borne Escherichia coli O157:H7 could be one of the pathogens posing high health risk to patients suffering from Acquired Immunodeficiency Syndrome (AIDS) because of its incrimination in diarrhoea cases in AIDS patients. The present study, which was conducted between March 2005 and August 2006, investigated the prevalence of E. coli O157:H7 in water, meat and meat products and vegetables and its impact on diarrhoeic conditions of confirmed and non-confirmed HIV/AIDS patients in the Amathole District in the Eastern Cape Province of South Africa. The water samples used in the study were obtained from stand pipes supplying treated drinking water to communities residing in Fort Beaufort, Alice, Dimbaza and Mdantsane whereas borehole waters were sampled from Ngwenya and Kwasaki. The meat and meat products and vegetable samples were purchased from shops, butcheries, supermarkets and open air markets in Fort Beaufort, Alice and Mdantsane. The stool swabs used in the study were obtained from HIV/AIDS and outpatient clinics at Frere Hospital in East London. A total of 180 each of water, meat and meat products and vegetable samples and another 360 stool samples were analyzed for E. coli O157:H7. Presumptive E. coli O157 was isolated from the samples by culture-based methods and confirmed using Polymerase Chain Reaction techniques. Anti-biogram as well as risk assessment were also carried out using standard methods. The viable counts of presumptive E. coli O157 for water samples ranged between 3.3 × 104 and 1.71 × 105 CFU/ml, and between 1.8 × 104 and 5.04 × 106 CFU/g for meat and meat products, whereas those for vegetables ranged between 1.3 × 103 and 1.6 × 106 CFU/g. The counts of presumptive E. coli O157 for the water and vegetable samples were not significantly different whereas those for meat and meat products were found to be significantly different (P ≤ 0.05). The prevalence rates of presumptive E coli O157 in meat and meat products was 35.55 percent (64/180), and 25.55 percent (46/180) and 21.66 percent (39/180) for water and vegetables respectively. Prevalence of presumptive E. coli O157 in the stool samples of HIV/AIDS patients was 36.39 percent (131/360), of which 56.5 percent (74/131) and 43.5 percent (57/131) were from stools of confirmed and non-confirmed HIV/AIDS patients, respectively. Molecular analysis of representative presumptive E. coli O157 indicated that 10.29 percent (4/39) of vegetables; 14.81 percent (4/27) of water and 38.46 percent (5/13) of meat and meat products carried E. coli O157:H7. Also 36 percent (9/25) and 17.24 percent (5/29) of the stool samples were positive for E. coli O157:H7. Antimicrobial susceptibility profile revealed that all of the E. coli O157:H7 isolated from water, meat and meat products and vegetables as well as those isolated from stools of confirmed and non-confirmed HIV/AIDS patients were resistant (R) to gentamycin and erythromycin. However, 75 percent (20/27) of these isolates were resistant (R) to ampicillin and tetracycline whereas approximately 25 percent (6/27) were resistant (R) to nalidixic acid, ceftriaxone, and chloramphenicol. All the isolates (27/27) were susceptible (S) to amikacin. Probability of risk of E. coli O157:H7 infection was high for confirmed HIV/AIDS patients than for the non-confirmed HIV/AIDS patients. Estimated probability of risk of E. coli O157:H7 due to ingestion of water was 1.00 for 100 confirmed and non-confirmed HIV/AIDS patients. Risk due to meat and meat products was estimated at 0.27 and 0.20 and for vegetables at 0.21 and 0.15 per 100 confirmed and non-confirmed HIV/AIDS patients. The findings of this study predicted a possible link between E. coli O157:H7 isolated from drinking water, meat and meat products and vegetables and diarrhoeic conditions in both confirmed and non-confirmed HIV/AIDS patients, and concludes that confirmed HIV/AIDS patients can be at higher risk of contracting water and food borne E. coli O157:H7 than nonconfirmed HIV/AIDS patients. It is thus recommended that proper water treatment and food handling, maximum food and water safety and sanitation as well as personal body hygiene should be maintained, in order to prevent E. coli O157:H7 infections. Education initiatives and active surveillance of E. coli O157:H7 should be taken by all the stake-holders working directly or indirectly towards ensuring enduring sound public health.
- Full Text:
Assessment of antibacterial potentials of Garcinia Kola seed extracts and their interactions with antibiotics
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11242 , http://hdl.handle.net/10353/71 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal vi activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections.
- Full Text:
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11242 , http://hdl.handle.net/10353/71 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal vi activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections.
- Full Text: