Synthesis and characterization of binary and ternary palladium alloys for use as alternative counter electrode catalysts in dye sensitized solar cells
- Authors: Zingwe, Nyengerai Hillary
- Date: 2020
- Subjects: Electrocatalysis Chemistry
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: http://hdl.handle.net/10353/18513 , vital:42580
- Description: The dye sensitized solar cell counter electrode facilitates the regeneration of the dye molecules thereby ensuring the provision of higher sunlight to electricity conversion efficiency. The standard platinum electrode suffers from low efficiency due to corrosion by the redox mediator as well as being extremely expensive due to high demand. As an alternative this research study illustrates the efforts undertaken to replace the standard platinum counter electrode with palladium alloy counter electrodes. Application of palladium alloys ensures sustenance of high catalytic activity by palladium which is as effective as platinum. Although palladium is equally as expensive as platinum, its application in the form of alloys minimizes the amount required to produce an effective counter electrode to 0.001-0.004 moles thereby ensuring the provision of high efficiency at a lower cost. Furthermore, charge transfer from the other alloyed elements to the palladium atom increases active sites leading to higher catalytic activity than platinum. Additionally, changes in crystal structure due to alloying enhances resistance to corrosion thus enabling the longevity of the alloy counter electrode in the electrolyte ___________________________________________________________________________ Electrochemical analysis was conducted to determine the catalytic functionality of the developed alloys in cobalt, ferrocene and iodine redox mediators. The binary (PdNi-reduced graphene oxide (rGO) and PdCo-rGO) and ternary (PdNiCo-rGO) palladium alloys were fabricated via a hydrothermal method. In order to determine the composition which could provide the maximum activity, optimization was conducted through variation of the molar ratios of the precursor solutions. The properties of the synthesized palladium alloys were determined using various techniques including x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The developed alloys were observed to comprise of palladium, nickel, cobalt, and carbon atoms. The particles were spherical in nature for all the unsupported alloys with the carbon supported alloys exhibiting spherical particle wholly surrounded by graphene sheets. Cyclic voltammetry and electrochemical impedance spectroscopy analysis showed that the carbon supported alloys PdNi-rGO, PdCo-rGO and PdNiCo-rGO produced the highest catalytic activities due to the synergy between their respective alloys and the incorporated reduced graphene oxide. The high catalytic effectiveness of these alloys yielded power conversion efficiency in the order PdNiCo-rGO (9.01) > PdNi-rGO (8.4.%) > PdCo-rGO (6.56%) > Pt (5.7%) which were better than the platinum efficiency in the cobalt redox mediator. The higher efficiency in the cobalt redox mediator relative to the iodine electrolyte illustrates that they are viable alternatives to the, corrosive and volatile iodine. Obtained results show that, the high recombination rates between the photogenerated electrons and the oxidized dye molecule which have been reported to reduce power conversion efficiency in one electron redox mediators did not affect the performance of the cell. However, these higher recombination rates affected the ferrocene electrolyte leading to extremely poor efficiency metrics. The obtained results indicated that reduced graphene oxide supported PdNi-rGO, PdNiCo-rGO as well as the unsupported PdNi3 alloys could successfully be implemented as substitutes to the platinum counter electrode in dye sensitized solar cells. The application of the palladium alloys is vital for improving stability and power conversion efficiency, as well as reducing cost.
- Full Text:
- Date Issued: 2020
- Authors: Zingwe, Nyengerai Hillary
- Date: 2020
- Subjects: Electrocatalysis Chemistry
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: http://hdl.handle.net/10353/18513 , vital:42580
- Description: The dye sensitized solar cell counter electrode facilitates the regeneration of the dye molecules thereby ensuring the provision of higher sunlight to electricity conversion efficiency. The standard platinum electrode suffers from low efficiency due to corrosion by the redox mediator as well as being extremely expensive due to high demand. As an alternative this research study illustrates the efforts undertaken to replace the standard platinum counter electrode with palladium alloy counter electrodes. Application of palladium alloys ensures sustenance of high catalytic activity by palladium which is as effective as platinum. Although palladium is equally as expensive as platinum, its application in the form of alloys minimizes the amount required to produce an effective counter electrode to 0.001-0.004 moles thereby ensuring the provision of high efficiency at a lower cost. Furthermore, charge transfer from the other alloyed elements to the palladium atom increases active sites leading to higher catalytic activity than platinum. Additionally, changes in crystal structure due to alloying enhances resistance to corrosion thus enabling the longevity of the alloy counter electrode in the electrolyte ___________________________________________________________________________ Electrochemical analysis was conducted to determine the catalytic functionality of the developed alloys in cobalt, ferrocene and iodine redox mediators. The binary (PdNi-reduced graphene oxide (rGO) and PdCo-rGO) and ternary (PdNiCo-rGO) palladium alloys were fabricated via a hydrothermal method. In order to determine the composition which could provide the maximum activity, optimization was conducted through variation of the molar ratios of the precursor solutions. The properties of the synthesized palladium alloys were determined using various techniques including x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The developed alloys were observed to comprise of palladium, nickel, cobalt, and carbon atoms. The particles were spherical in nature for all the unsupported alloys with the carbon supported alloys exhibiting spherical particle wholly surrounded by graphene sheets. Cyclic voltammetry and electrochemical impedance spectroscopy analysis showed that the carbon supported alloys PdNi-rGO, PdCo-rGO and PdNiCo-rGO produced the highest catalytic activities due to the synergy between their respective alloys and the incorporated reduced graphene oxide. The high catalytic effectiveness of these alloys yielded power conversion efficiency in the order PdNiCo-rGO (9.01) > PdNi-rGO (8.4.%) > PdCo-rGO (6.56%) > Pt (5.7%) which were better than the platinum efficiency in the cobalt redox mediator. The higher efficiency in the cobalt redox mediator relative to the iodine electrolyte illustrates that they are viable alternatives to the, corrosive and volatile iodine. Obtained results show that, the high recombination rates between the photogenerated electrons and the oxidized dye molecule which have been reported to reduce power conversion efficiency in one electron redox mediators did not affect the performance of the cell. However, these higher recombination rates affected the ferrocene electrolyte leading to extremely poor efficiency metrics. The obtained results indicated that reduced graphene oxide supported PdNi-rGO, PdNiCo-rGO as well as the unsupported PdNi3 alloys could successfully be implemented as substitutes to the platinum counter electrode in dye sensitized solar cells. The application of the palladium alloys is vital for improving stability and power conversion efficiency, as well as reducing cost.
- Full Text:
- Date Issued: 2020
Isolation, characterisation of terpenoids and biosynthesis of silver nanoparticles of acacia mearnsii de wild and acacia Karroo Hayne and their Bioassays
- Authors: Avoseh, Opeyemi Nudewhenu
- Date: 2015
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11355 , http://hdl.handle.net/10353/d1021292
- Description: Great wealth of traditional knowledge about the use of plants had been transferred from generation to generations leading to the present day drug discovery and invention of new scientific methods of isolation, purification and identification. With the discovery of new diseases and drug-resistant organisms, there is no other source or deposit of lead compounds or drugs than the plant kingdom. As a result of this, about 25% of the current drug administered owe their origin to plant sources with the view to reduce the carcinogenic effect of synthetic drugs. Volatile terpenoids among other broad spectrum of natural product had been implicated to show high therapeutic properly. In the present study, selected locally-used medicinal plants were exploited for the presence of potent bioactive compounds and ability to form nanoparticles with distinctive property for use as chemoprotective agent against inflammation, tumors, cancer and other chronic diseases. Acacia mearnsii De Wild and Acacia karroo Hayne studied in this report are known to be invasive species with no proper regulation to conserve and preserve them. However, ethnopharmacology report of these plant species in the Southern Africa region reveals that they are good antiseptic, anti-diarrhea, anti-inflammation and a forage for livestock. These plants were subjected to volatile extraction protocol of some parts of the plants (stem and leaves) followed by examination of the anti-inflammation capacity of the extracts using an animal model. In addition, the bye-product (hydrosol) from the stem bark of each species possess a high reducing and stabilizing property leading to synthesis of silver nanoparticles, followed by investigation of the anti-inflammation potential of the synthesized silver nanoparticles using animal model. The volatile oils of the leaves and stem bark of Acacia mearnsii De Wild obtained by hydro-distillation were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Twenty, Thirty-Eight, Twenty-nine and Thirty-Eight components accounting for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, and fresh stem, dry stem bark respectively. Oral administration of essential oils at the dose of 2% showed significant (p<0.05) anti-inflammatory properties in the albumin induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. Furthermore, the chemical composition of the essential oils obtained by hydro-distillation from the leaves and stem bark (dry and fresh) of Acacia karroo Hayne, analysed by GC-MS, shows that hexanal (10.67%) and ß-ionone (9.74%) were dominant in the dried leaves, β-pinene (14.30%), and (Z)-2-Hexen-1-ol (10.21%) in the fresh leaves while Octacosane (10.59%) and phytol (23.38%) were dominant in the dry and fresh stem respectively. The anti-inflammation ability of these oils after an albumin-induced inflammation on wistar rats, shows a significant effect at the 1st h of treatment with a significance of P< 0.01 for all part plants, while the fresh leaves shows further inhibitory activities at the 2nd h of analysis. Silver nanoparticles (AgNPs) were successfully synthesized from AgNO3 through a green route using the aqueous extract (hydrosols) of Acacia mearnsii De Wild and Acacia karroo Hayne as reducing agent and as well as capping agent. The Acacia-mediated AgNPs were characterized with the use of UV-vis absorption spectroscopy, Fourier Transform Spectroscopy (FT-IR), Transmission electron microscope (TEM), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDX), and X-ray Diffractometry (XRD). A spherical, 10-40 nm diameter silver nanoparticles were synthesized with very low level of stability for the AMDS and the AKDS-AgNPs. In addition, nociceptive activity with a mice rat reveals higher inhibition at the neurogenic phase for the AKDS-AgNPs, while AMDS-AgNPs exhibited a high inhibition at the inflammatory phase. The potent anti-inflammatory activity of essential oils of A. mearnsii De Wild and A. karroo Hayne hereby confirmed its traditional use in treating various inflammatory diseases, while the inflammatory studies on the synthesized AgNPs reveals a very active compound which can be used as a potent opioid or non-steroidal anti-inflammatory drug (NSAID).
- Full Text:
- Date Issued: 2015
- Authors: Avoseh, Opeyemi Nudewhenu
- Date: 2015
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11355 , http://hdl.handle.net/10353/d1021292
- Description: Great wealth of traditional knowledge about the use of plants had been transferred from generation to generations leading to the present day drug discovery and invention of new scientific methods of isolation, purification and identification. With the discovery of new diseases and drug-resistant organisms, there is no other source or deposit of lead compounds or drugs than the plant kingdom. As a result of this, about 25% of the current drug administered owe their origin to plant sources with the view to reduce the carcinogenic effect of synthetic drugs. Volatile terpenoids among other broad spectrum of natural product had been implicated to show high therapeutic properly. In the present study, selected locally-used medicinal plants were exploited for the presence of potent bioactive compounds and ability to form nanoparticles with distinctive property for use as chemoprotective agent against inflammation, tumors, cancer and other chronic diseases. Acacia mearnsii De Wild and Acacia karroo Hayne studied in this report are known to be invasive species with no proper regulation to conserve and preserve them. However, ethnopharmacology report of these plant species in the Southern Africa region reveals that they are good antiseptic, anti-diarrhea, anti-inflammation and a forage for livestock. These plants were subjected to volatile extraction protocol of some parts of the plants (stem and leaves) followed by examination of the anti-inflammation capacity of the extracts using an animal model. In addition, the bye-product (hydrosol) from the stem bark of each species possess a high reducing and stabilizing property leading to synthesis of silver nanoparticles, followed by investigation of the anti-inflammation potential of the synthesized silver nanoparticles using animal model. The volatile oils of the leaves and stem bark of Acacia mearnsii De Wild obtained by hydro-distillation were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS). Twenty, Thirty-Eight, Twenty-nine and Thirty-Eight components accounting for 93.8%, 92.1%, 78.5% and 90.9% of the total oils of the fresh, dry leaves and fresh, dry stem bark respectively. The major components of the oil were octadecyl alcohol (25.5%) and phytol (10.5%); cis-verbenol (29.5%); phytol (10.1%) and phytol (23.4%) for the fresh leaves, dried leaves, and fresh stem, dry stem bark respectively. Oral administration of essential oils at the dose of 2% showed significant (p<0.05) anti-inflammatory properties in the albumin induced test model in rats. Oils from the fresh leaves and dry stems inhibited inflammation beyond 4 h post treatment. Furthermore, the chemical composition of the essential oils obtained by hydro-distillation from the leaves and stem bark (dry and fresh) of Acacia karroo Hayne, analysed by GC-MS, shows that hexanal (10.67%) and ß-ionone (9.74%) were dominant in the dried leaves, β-pinene (14.30%), and (Z)-2-Hexen-1-ol (10.21%) in the fresh leaves while Octacosane (10.59%) and phytol (23.38%) were dominant in the dry and fresh stem respectively. The anti-inflammation ability of these oils after an albumin-induced inflammation on wistar rats, shows a significant effect at the 1st h of treatment with a significance of P< 0.01 for all part plants, while the fresh leaves shows further inhibitory activities at the 2nd h of analysis. Silver nanoparticles (AgNPs) were successfully synthesized from AgNO3 through a green route using the aqueous extract (hydrosols) of Acacia mearnsii De Wild and Acacia karroo Hayne as reducing agent and as well as capping agent. The Acacia-mediated AgNPs were characterized with the use of UV-vis absorption spectroscopy, Fourier Transform Spectroscopy (FT-IR), Transmission electron microscope (TEM), Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDX), and X-ray Diffractometry (XRD). A spherical, 10-40 nm diameter silver nanoparticles were synthesized with very low level of stability for the AMDS and the AKDS-AgNPs. In addition, nociceptive activity with a mice rat reveals higher inhibition at the neurogenic phase for the AKDS-AgNPs, while AMDS-AgNPs exhibited a high inhibition at the inflammatory phase. The potent anti-inflammatory activity of essential oils of A. mearnsii De Wild and A. karroo Hayne hereby confirmed its traditional use in treating various inflammatory diseases, while the inflammatory studies on the synthesized AgNPs reveals a very active compound which can be used as a potent opioid or non-steroidal anti-inflammatory drug (NSAID).
- Full Text:
- Date Issued: 2015
Synthesis, characterization & application of visible light responsive nitrogen doped Tio2 and copolymer-grafted asymmetric membranes with ozonolysis for water treatment
- Authors: Mungondori, Henry H
- Date: 2015
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11350 , http://hdl.handle.net/10353/d1020257
- Description: The use of titanium dioxide for the photo-catalytic removal of organic, inorganic, and microbial pollutants from natural water and wastewater has been considered a very promising technique. The aim of this study was to prepare nitrogen doped titanium dioxide, immobilize it on asymmetric polymeric membranes of poly (methacrylic acid) grafted onto poly (vinylidene difluoride) (PVDF) blended with poly (acrylonitrile) (PAN), and evaluate the photo-catalytic, antimicrobial, and antifouling properties of the membranes. Nitrogen doped titanium dioxide (N-TiO2) nano-particles were prepared by a low temperature sol gel synthesis technique. The modification of TiO2 with nitrogen allows photo-sensitization of the photo-catalyst towards visible light utilization. The N-TiO2 nano-particles were characterized by fourier transform infrared spectroscopy (FT-IR), scanning x-ray photoelectron spectroscopy (SXPS), X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), Brunauer Emmett Teller (BET) surface area analysis, and transmission electron microscopy (TEM). The characterizations revealed the presence of the expected functional groups and confirmed successful doping and that the product was visible light responsive. Novel poly (methacrylic acid) grafted onto poly (vinylidene difluoride)/ poly (acrylonitrile) (PMAA-g-PVDF/ PAN) asymmetric membranes were prepared by the dry-wet phase inversion technique. The poly (methacrylic acid) (PMAA) side chains where grafted onto an activated PVDF backbone by reversible addition fragmentation chain transfer (RAFT) polymerization. The photo-catalytic membranes were generated by blending N-TiO2 with the polymer solution before casting the membranes. The membranes were characterized by FT-IR, nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). FT-IR and NMR analyses confirmed successful grafting of MAA chains onto PVDF while SEM confirmed the successful preparation of membranes with asymmetric structure. The efficacy of the photo-catalytic asymmetric membranes was evaluated on the removal of herbicides from synthetic water. Bentazon was easily degraded while atrazine and paraquat were recalcitrant and proved difficult to degrade. The best results were observed with 3 % N-TiO2-PMAA-g-PVDF/ PAN asymmetric membranes on the photo-degradation of bentazon, atrazine and paraquat in water. Significant enhancement in the photo-degradation of the three herbicides was observed when photo-catalytic degradation was coupled with ozonation. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed the presence of a degradation by-product during the photo-catalytic degradation of bentazon. The photo-catalytic membranes were also evaluated on the photo-catalytic reduction of heavy metals Pb2+ and Fe3+ in water, and the best results were obtained using 1 % N-TiO2-PMAA-g-PVDF/ PAN and 1 % N-TiO2-PAN asymmetric membranes. All prepared photo-catalytic membranes where capable of completely inactivating E. coli ATCC 8739 within 120 minutes of exposure and inactivation rate increased with increasing N-TiO2 photo-catalyst loading. However, there was an indication from the results obtained that N-TiO2 supported on PMAA-g-PVDF/ PAN showed a higher inactivation rate of E. coli ATCC 8739 compared to N-TiO2-PAN and N-TiO2-PVDF membranes. The 1 % N-TiO2-PMAA-g-PVDF/ PAN membranes gave the highest pure water flux (421.83 L/m2h). This increase (PVDF = 30.50 L/m2h, PAN = 73.85 L/m2h) in pure water flux is owedb to PMAA grafting as well as addition of N-TiO2. These modifications resulted in an increased membrane surface hydrophilicity, which promoted permeation of pure water through the membrane structure. A high bovine serum albumin (BSA) rejection (76.5 %) was noted and can be attributed to steric hindrance brought about by PMAA side chains which prevented the bulky BSA molecules from attaching to the membrane surface for PMAA-g-PVDF/ PAN membranes. However, the supporting porous sub-layer of an asymmetric membrane seemed to play a very important role in the overall permeability of a membrane. PVDF membranes are highly hydrophobic hence they gave a very low pure water flux.
- Full Text:
- Date Issued: 2015
- Authors: Mungondori, Henry H
- Date: 2015
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11350 , http://hdl.handle.net/10353/d1020257
- Description: The use of titanium dioxide for the photo-catalytic removal of organic, inorganic, and microbial pollutants from natural water and wastewater has been considered a very promising technique. The aim of this study was to prepare nitrogen doped titanium dioxide, immobilize it on asymmetric polymeric membranes of poly (methacrylic acid) grafted onto poly (vinylidene difluoride) (PVDF) blended with poly (acrylonitrile) (PAN), and evaluate the photo-catalytic, antimicrobial, and antifouling properties of the membranes. Nitrogen doped titanium dioxide (N-TiO2) nano-particles were prepared by a low temperature sol gel synthesis technique. The modification of TiO2 with nitrogen allows photo-sensitization of the photo-catalyst towards visible light utilization. The N-TiO2 nano-particles were characterized by fourier transform infrared spectroscopy (FT-IR), scanning x-ray photoelectron spectroscopy (SXPS), X-ray diffraction analysis (XRD), diffuse reflectance spectroscopy (DRS), Brunauer Emmett Teller (BET) surface area analysis, and transmission electron microscopy (TEM). The characterizations revealed the presence of the expected functional groups and confirmed successful doping and that the product was visible light responsive. Novel poly (methacrylic acid) grafted onto poly (vinylidene difluoride)/ poly (acrylonitrile) (PMAA-g-PVDF/ PAN) asymmetric membranes were prepared by the dry-wet phase inversion technique. The poly (methacrylic acid) (PMAA) side chains where grafted onto an activated PVDF backbone by reversible addition fragmentation chain transfer (RAFT) polymerization. The photo-catalytic membranes were generated by blending N-TiO2 with the polymer solution before casting the membranes. The membranes were characterized by FT-IR, nuclear magnetic resonance spectroscopy (NMR), scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA). FT-IR and NMR analyses confirmed successful grafting of MAA chains onto PVDF while SEM confirmed the successful preparation of membranes with asymmetric structure. The efficacy of the photo-catalytic asymmetric membranes was evaluated on the removal of herbicides from synthetic water. Bentazon was easily degraded while atrazine and paraquat were recalcitrant and proved difficult to degrade. The best results were observed with 3 % N-TiO2-PMAA-g-PVDF/ PAN asymmetric membranes on the photo-degradation of bentazon, atrazine and paraquat in water. Significant enhancement in the photo-degradation of the three herbicides was observed when photo-catalytic degradation was coupled with ozonation. Liquid chromatography-mass spectrometry (LC-MS) analysis confirmed the presence of a degradation by-product during the photo-catalytic degradation of bentazon. The photo-catalytic membranes were also evaluated on the photo-catalytic reduction of heavy metals Pb2+ and Fe3+ in water, and the best results were obtained using 1 % N-TiO2-PMAA-g-PVDF/ PAN and 1 % N-TiO2-PAN asymmetric membranes. All prepared photo-catalytic membranes where capable of completely inactivating E. coli ATCC 8739 within 120 minutes of exposure and inactivation rate increased with increasing N-TiO2 photo-catalyst loading. However, there was an indication from the results obtained that N-TiO2 supported on PMAA-g-PVDF/ PAN showed a higher inactivation rate of E. coli ATCC 8739 compared to N-TiO2-PAN and N-TiO2-PVDF membranes. The 1 % N-TiO2-PMAA-g-PVDF/ PAN membranes gave the highest pure water flux (421.83 L/m2h). This increase (PVDF = 30.50 L/m2h, PAN = 73.85 L/m2h) in pure water flux is owedb to PMAA grafting as well as addition of N-TiO2. These modifications resulted in an increased membrane surface hydrophilicity, which promoted permeation of pure water through the membrane structure. A high bovine serum albumin (BSA) rejection (76.5 %) was noted and can be attributed to steric hindrance brought about by PMAA side chains which prevented the bulky BSA molecules from attaching to the membrane surface for PMAA-g-PVDF/ PAN membranes. However, the supporting porous sub-layer of an asymmetric membrane seemed to play a very important role in the overall permeability of a membrane. PVDF membranes are highly hydrophobic hence they gave a very low pure water flux.
- Full Text:
- Date Issued: 2015
Computational studies, synthesis and characterization of ruthenium (ii) anticancer complexes
- Authors: Adeniyi, Adebayo Azeez
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11338 , http://hdl.handle.net/10353/d1015577
- Description: This thesis is centred on the application of Ru-based complexes as a promising alternative to cis-platin in cancer chemotherapy. Cis-platin is known to be the most prescribed chemotherapy which has more than 70% application in cancer cases especially the testicular cancer. An insight is provided in Chapter One and Two into the literatures reports on the application of Ru(II)-based complexes in cancer chemotherapy. In order to address some of the pressing challenges in rational design of Ru-based anticancer complexes, section 3.3 and 3.4 deal with efforts to elucidate the complication of their chemistry and instability while in section 3.5 efforts are made to find solution to the lack of proper knowledge of their targets using different theoretical approaches as presented in Chapter Three. In addition to the theoretical study, this thesis also comprises of the synthesis of the bis-pyrazole derivatives type of ligands and the derivatives of their Ru(II)-based complexes as provided in Chapter Four and Five respectively. Also the computational methods were used to elucidate the structural and spectroscopic properties of the synthesised ligands and their Ru(II)-based complexes. The geometrical and electronic properties are studied in relation to the stability and the reported anticancer activities of Ru(II)-based complexes in section 3.3. In subsection 3.3.1, several quantum properties including the natural energy decomposition analysis (NEDA) and quantum theory of atoms in a molecule (QTAIM) are computed on three models of RAPTA-C complexes using DFT with hybrid functional and basis set with ECP and without ECP. The higher stability of Carbo-RAPTA-C and Oxalo-RAPTA-C over RAPTA-C comes from the lower exchange repulsion and higher polarization contributions to their stability which gives insight into experimental observation. A similar study was carried out in subsection 3.3.2 on half-sandwich Ru(II)-based anticancer complexes with 6-toluene and 6-trifluorotoluene.
- Full Text:
- Date Issued: 2014
- Authors: Adeniyi, Adebayo Azeez
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11338 , http://hdl.handle.net/10353/d1015577
- Description: This thesis is centred on the application of Ru-based complexes as a promising alternative to cis-platin in cancer chemotherapy. Cis-platin is known to be the most prescribed chemotherapy which has more than 70% application in cancer cases especially the testicular cancer. An insight is provided in Chapter One and Two into the literatures reports on the application of Ru(II)-based complexes in cancer chemotherapy. In order to address some of the pressing challenges in rational design of Ru-based anticancer complexes, section 3.3 and 3.4 deal with efforts to elucidate the complication of their chemistry and instability while in section 3.5 efforts are made to find solution to the lack of proper knowledge of their targets using different theoretical approaches as presented in Chapter Three. In addition to the theoretical study, this thesis also comprises of the synthesis of the bis-pyrazole derivatives type of ligands and the derivatives of their Ru(II)-based complexes as provided in Chapter Four and Five respectively. Also the computational methods were used to elucidate the structural and spectroscopic properties of the synthesised ligands and their Ru(II)-based complexes. The geometrical and electronic properties are studied in relation to the stability and the reported anticancer activities of Ru(II)-based complexes in section 3.3. In subsection 3.3.1, several quantum properties including the natural energy decomposition analysis (NEDA) and quantum theory of atoms in a molecule (QTAIM) are computed on three models of RAPTA-C complexes using DFT with hybrid functional and basis set with ECP and without ECP. The higher stability of Carbo-RAPTA-C and Oxalo-RAPTA-C over RAPTA-C comes from the lower exchange repulsion and higher polarization contributions to their stability which gives insight into experimental observation. A similar study was carried out in subsection 3.3.2 on half-sandwich Ru(II)-based anticancer complexes with 6-toluene and 6-trifluorotoluene.
- Full Text:
- Date Issued: 2014
Structural, optical and electrical characterization of nano-sized c-tio2 quamtum dots synthesized by spray pyrolysis
- Authors: Taziwa, Raymond Tichaona
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11342 , http://hdl.handle.net/10353/d1016089
- Description: In the 21st century, scientific communities face challenges and opportunities concerning future development, where innovations must be a key driver over the past, evolution of African societies were based on incomplete models, only taking into account economical growth and not paying attention to environmental deterioration as a consequence of anthropogenic activity and environmental pollution. We have to learn from our past mistakes in order not to repeat them. Education and research of today as the embryonic stages of the development models of tomorrow should be directed toward a sustainable mentality. In this sense, solar energy technologies have emerged as key instruments for minimizing environmental impact as well as reducing economic cost in the field of renewable energies. Titanium dioxide is a fascinating low cost material exhibiting unique properties of stability and photo catalytic activities, leading to clean technologies in water purification and energy conversion of sunlight. However, conventional techniques (high temperature, high vacuum, high pressures) of processing titanium dioxide are a technological limitation due to excessive energy consumption. This poses a handicap for practical applications in areas such as preparation of hybrid organic/Titanium dioxide materials or devices on thermo flexible substrates such as plastic material. It is for this reason that the investigation presented in this Ph.D thesis deals with the development of spray pyrolysis techniques for preparation of carbon doped titanium dioxide nano powders for solar cell applications. This thesis is therefore structured as follows: Chapter 1 gives a general overview of the work done in this thesis. This work relies greatly on the excellent structural optical and electrical properties of TiO2 thin films, as well as its chemical resistance and insulating properties. A summary of the physical, optical, electrical and chemical properties reported in the literature, with an emphasis on those relevant to solar cell fabrication, is presented in Chapter 2. Chapter 3 gives a concise literature review on models governing droplet formation in ultrasonic spray pyrolysis (USP) techniques, the limitations of these models have been exposed and a new relation model for estimating the final particle size given a set of initial reaction conditions has been proposed. The presently derived model is quite advantageous in that it does not require the investigator to look up values of surface tension and density for every precursor solution. Chapter 4 presents in detail the designed and constructed spray pyrolysis system capable of realizing desired nano structures for photovoltaic applications. The first system employed an ultrasonic atomization spray nozzle in order to create an aerosol of the TiO2 precursor. The reasons for choosing ultrasonic spray deposition (USP) and the TiO2 precursors, titanium iso propoxide and titanium tetra butoxide are discussed. Chapter 5 outlines experimental methodologies used in synthesis and characterization of the materials used in this study. Chapter 5 further provides experimental methodologies used in fabrication of a new type of photo electrochemical solar cells (PECs). Chapter 6 reveals the opto-electrical results of PECs solar cells fabricated. There are numerous properties that are affected by the size but emphasis will be placed on nano-size and confinement effects. Chapter 7 presents a confirmation of the phonon confinement effects in C-TiO2 QDs for the first time. In addition Chapter 7 also presents a new phonon confinement model. Chapter 8 reveals the optical, structural and electronic properties of C-TiO2 QDs synthesized by USP and PSP techniques. In addition the electrical properties of C-TiO2 QDs PEC solar cells devices are reported in Chapter 8. Concluding remarks, with potential future research projects are presented in Chapter 9. Through these 9 chapters, all research questions have been answered satisfactorily and all objectives met. Most of the work contained in this thesis has been subjected to external reviews through publication of these peer reviewed articles.
- Full Text:
- Date Issued: 2014
- Authors: Taziwa, Raymond Tichaona
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11342 , http://hdl.handle.net/10353/d1016089
- Description: In the 21st century, scientific communities face challenges and opportunities concerning future development, where innovations must be a key driver over the past, evolution of African societies were based on incomplete models, only taking into account economical growth and not paying attention to environmental deterioration as a consequence of anthropogenic activity and environmental pollution. We have to learn from our past mistakes in order not to repeat them. Education and research of today as the embryonic stages of the development models of tomorrow should be directed toward a sustainable mentality. In this sense, solar energy technologies have emerged as key instruments for minimizing environmental impact as well as reducing economic cost in the field of renewable energies. Titanium dioxide is a fascinating low cost material exhibiting unique properties of stability and photo catalytic activities, leading to clean technologies in water purification and energy conversion of sunlight. However, conventional techniques (high temperature, high vacuum, high pressures) of processing titanium dioxide are a technological limitation due to excessive energy consumption. This poses a handicap for practical applications in areas such as preparation of hybrid organic/Titanium dioxide materials or devices on thermo flexible substrates such as plastic material. It is for this reason that the investigation presented in this Ph.D thesis deals with the development of spray pyrolysis techniques for preparation of carbon doped titanium dioxide nano powders for solar cell applications. This thesis is therefore structured as follows: Chapter 1 gives a general overview of the work done in this thesis. This work relies greatly on the excellent structural optical and electrical properties of TiO2 thin films, as well as its chemical resistance and insulating properties. A summary of the physical, optical, electrical and chemical properties reported in the literature, with an emphasis on those relevant to solar cell fabrication, is presented in Chapter 2. Chapter 3 gives a concise literature review on models governing droplet formation in ultrasonic spray pyrolysis (USP) techniques, the limitations of these models have been exposed and a new relation model for estimating the final particle size given a set of initial reaction conditions has been proposed. The presently derived model is quite advantageous in that it does not require the investigator to look up values of surface tension and density for every precursor solution. Chapter 4 presents in detail the designed and constructed spray pyrolysis system capable of realizing desired nano structures for photovoltaic applications. The first system employed an ultrasonic atomization spray nozzle in order to create an aerosol of the TiO2 precursor. The reasons for choosing ultrasonic spray deposition (USP) and the TiO2 precursors, titanium iso propoxide and titanium tetra butoxide are discussed. Chapter 5 outlines experimental methodologies used in synthesis and characterization of the materials used in this study. Chapter 5 further provides experimental methodologies used in fabrication of a new type of photo electrochemical solar cells (PECs). Chapter 6 reveals the opto-electrical results of PECs solar cells fabricated. There are numerous properties that are affected by the size but emphasis will be placed on nano-size and confinement effects. Chapter 7 presents a confirmation of the phonon confinement effects in C-TiO2 QDs for the first time. In addition Chapter 7 also presents a new phonon confinement model. Chapter 8 reveals the optical, structural and electronic properties of C-TiO2 QDs synthesized by USP and PSP techniques. In addition the electrical properties of C-TiO2 QDs PEC solar cells devices are reported in Chapter 8. Concluding remarks, with potential future research projects are presented in Chapter 9. Through these 9 chapters, all research questions have been answered satisfactorily and all objectives met. Most of the work contained in this thesis has been subjected to external reviews through publication of these peer reviewed articles.
- Full Text:
- Date Issued: 2014
Synthesis, characterization, and biological studies of pyrazolone Schiff bases and their transition metal complexes
- Authors: Idemudia, Omoruyi Gold
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11340 , http://hdl.handle.net/10353/d1016068
- Description: Some new acylpyrazolone Schiff bases have been synthesized from the condensation reaction of two acylpyrazolone diketone precursors with phenylhydrazine, 2,4-dinitrophenylhydrazine and sulfanilamide. They have been fully characterized by elemental analysis and spectroscopic techniques (IR,1H and 13C NMR, and mass-spectra). The single crystal structure of the benzoyl derivative acylpyrazolone Schiff bases have been obtained and analyzed by X-ray crystallography technique. Solid state X-ray diffraction revealed a keto tautomer Schiff base in solid state. Mn(II), Co(II), Ni(II) and Cu(II) complexes with the Schiff bases have been synthesized and characterized by elemental analysis, IR and UV-VIS spectroscopy, magnetic susceptibility measurements, and thermal studies (TGA and DTG). An octahedral geometry around the transition metal ion, consisting of two bidentate Schiff base ligands bonding through the azometine nitrogen and ketonic oxygen have been proposed based on careful interpretation of available analytical and spectroscopic characterization results. Two water molecules as ligands complete the octahedral geometry in all cases. Using the invitro disc diffusion method for screening synthesized compounds against selected gram positive and gram negative bacterial at 40 mg/mL, and the DPPH free radical scavenging methods at 0.50, 0.25 and 0.13 mg/mL, the synthesized Schiff base and metal complexes showed varying biological activities. 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one sul29 fanilamide showed more activity generally, exhibiting a broad spectrum activity against all selected bacterial in some cases. Mn(II), Co(II) and Ni(II) complexes of sulfanilamide Schiff base with the acetylpyrazolone derivative 4-acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one sulfanilamide, exhibited a stronger and very good DPPH radical scavenging activity as good as ascorbic acid on comparing, but not with Cu(II). As such they could be important antitumour candidates.
- Full Text:
- Date Issued: 2014
- Authors: Idemudia, Omoruyi Gold
- Date: 2014
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11340 , http://hdl.handle.net/10353/d1016068
- Description: Some new acylpyrazolone Schiff bases have been synthesized from the condensation reaction of two acylpyrazolone diketone precursors with phenylhydrazine, 2,4-dinitrophenylhydrazine and sulfanilamide. They have been fully characterized by elemental analysis and spectroscopic techniques (IR,1H and 13C NMR, and mass-spectra). The single crystal structure of the benzoyl derivative acylpyrazolone Schiff bases have been obtained and analyzed by X-ray crystallography technique. Solid state X-ray diffraction revealed a keto tautomer Schiff base in solid state. Mn(II), Co(II), Ni(II) and Cu(II) complexes with the Schiff bases have been synthesized and characterized by elemental analysis, IR and UV-VIS spectroscopy, magnetic susceptibility measurements, and thermal studies (TGA and DTG). An octahedral geometry around the transition metal ion, consisting of two bidentate Schiff base ligands bonding through the azometine nitrogen and ketonic oxygen have been proposed based on careful interpretation of available analytical and spectroscopic characterization results. Two water molecules as ligands complete the octahedral geometry in all cases. Using the invitro disc diffusion method for screening synthesized compounds against selected gram positive and gram negative bacterial at 40 mg/mL, and the DPPH free radical scavenging methods at 0.50, 0.25 and 0.13 mg/mL, the synthesized Schiff base and metal complexes showed varying biological activities. 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-one sul29 fanilamide showed more activity generally, exhibiting a broad spectrum activity against all selected bacterial in some cases. Mn(II), Co(II) and Ni(II) complexes of sulfanilamide Schiff base with the acetylpyrazolone derivative 4-acetyl-3-methyl-1-phenyl-2-pyrazolin-5-one sulfanilamide, exhibited a stronger and very good DPPH radical scavenging activity as good as ascorbic acid on comparing, but not with Cu(II). As such they could be important antitumour candidates.
- Full Text:
- Date Issued: 2014
Preparation and evaluation of Lignocellulose-Montmorillonite nanocomposites for the adsorption of some heavy metals and organic dyes from aqueous solution
- Authors: Bunhu, Tavengwa
- Date: 2011
- Subjects: Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11333 , http://hdl.handle.net/10353/535 , Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Description: The need to reduce the cost of adsorption technology has led scientists to explore the use of many low cost adsorbents especially those from renewable resources. Lignocellulose and montmorillonite clay have been identified as potentially low cost and efficient adsorbent materials for the removal of toxic heavy metals and organic substances from contaminated water. Montmorillonite clay has good adsorption properties and the potential for ion exchange. Lignocellulose possesses many hydroxyl, carbonyl and phenyl groups and therefore, both montmorillonite and lignocellulose are good candidates for the development of effective and low cost adsorbents in water treatment and purification. The aim of this study was to prepare composite materials based on lignocellulose and montmorillonite clay and subsequently evaluate their efficacy as adsorbents for heavy metal species and organic pollutants in aqueous solution. It was also important to assess the adsorption properties of the modified individual (uncombined) lignocellulose and montmorillonite. Lignocellulose and sodium-exchanged montmorillonite (NaMMT) clay were each separately modified with methyl methacrylate (MMA), methacrylic acid (MAA) and methacryloxypropyl trimethoxysilane (MPS) and used as adsorbents for the removal of heavy metals and dyes from aqueous solution. The lignocellulose and NaMMT were modified with MMA, MAA and MPS through free radical graft polymerisation and/or condensation reactions. NaMMT was also modified through Al-pillaring to give AlpMMT. The materials were characterised by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) and characterisation results showed that the modification of the montmorillonite with MAA, MMA and MPS was successful. The modified lignocellulose and montmorillonite materials were evaluated for the adsorption of heavy metal ions (Cd2+ and Pb2+) from aqueous solution by the batch method. The adsorption isotherms and kinetics of both Cd2+ and Pb2+ onto the NaMMT clay, AlpMMT and lignocellulose materials are presented. The Langmuir isotherm was found to be the best fit for the adsorption of both heavy metals onto all the adsorbents. AlpMMT showed very poor uptake for heavy metals (both Cd2+ and Pb2+). PMMAgMMT, PMAAgMMT, PMAAgLig and PMPSgLig showed improved adsorption for both heavy metals. The mechanism of heavy metal adsorption onto the adsorbents was best represented by the pseudo second-order kinetic model. PMPSgLig, NaMMT and AlpMMT showed relatively high adsorption capacities for methyl orange, while the adsorption of neutral red was comparable for almost all the adsorbents. Neither the Langmuir model nor the Freundlich model was found to v adequately describe the adsorption process of dyes onto all the adsorbents. The pseudo second-order model was found to be the best fit to describe the adsorption mechanism of both dyes onto all the adsorbents. The modification of lignocellulose and montmorillonite with suitable organic groups can potentially produce highly effective and efficient adsorbents for the removal of both heavy metals and dyes from contaminated water. Novel adsorbent composite materials based on lignocellulose and montmorillonite clay (NaMMT) were also prepared and evaluated for the removal of pollutants (dyes and heavy metals) from aqueous solution. The lignocellulose-montmorillonite composites were prepared by in situ intercalative polymerisation, using methyl methacrylate, methacrylic acid and methacryloxypropyl trimethoxysilane (MPS) as coupling agents. The composite materials were characterised by FTIR, TGA, TEM and SAXS. SAXS diffractograms showed intercalated nanocomposites of PMMAgLig-NaMMT and PMAAgLig-NaMMT, whereas PMPSgLig-NaMMT showed a phase-separated composite and the same results were confirmed by TEM. The lignocellulose-montmorillonite composites were assessed for their adsorption properties for heavy metal ions (Cd2+ and Pb2+) and dyes (methyl orange and neutral red) from aqueous solution. Among these composite materials, only PMAAgLig-NaMMT showed a marked increase in the uptake of both Cd2+ and Pb2+ relative to lignocellulose and montmorillonite when used independently. The adsorption data were fitted to the Langmuir and Freundlich isotherms, as well as to the pseudo first-order and pseudo second-order kinetic models. The data were best described by the Langmuir isotherm and the pseudo second-order kinetic model. On the adsorption of dyes, only PMPSgLig-NaMMT showed enhanced adsorption of methyl orange (MetO) compared with lignocellulose and montmorillonite separately. The enhanced adsorption was attributed to the synergistic adsorption due to the presence of MPS, lignocellulose and NaMMT. Competitive adsorption studies were carried out from binary mixtures of MetO and Cd2+ or Pb2+ in aqueous solution. The adsorption process of MetO onto the composite material was found to follow the Freundlich adsorption model, while the mechanism of adsorption followed both the pseudo first-order and pseudo second-order models. This particular composite can be used for the simultaneous adsorption of both heavy metals and organic dyes from contaminated water. The adsorption of neutral red to the composite materials was comparable and the pseudo second-order kinetic model best described the adsorption mechanism.
- Full Text:
- Date Issued: 2011
- Authors: Bunhu, Tavengwa
- Date: 2011
- Subjects: Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11333 , http://hdl.handle.net/10353/535 , Lignocellulose , Lignocellulose -- Biodegradation , Water -- Purification , Adsorption , Separation (Technology) , Dyes and dyeing , Montmorillonite
- Description: The need to reduce the cost of adsorption technology has led scientists to explore the use of many low cost adsorbents especially those from renewable resources. Lignocellulose and montmorillonite clay have been identified as potentially low cost and efficient adsorbent materials for the removal of toxic heavy metals and organic substances from contaminated water. Montmorillonite clay has good adsorption properties and the potential for ion exchange. Lignocellulose possesses many hydroxyl, carbonyl and phenyl groups and therefore, both montmorillonite and lignocellulose are good candidates for the development of effective and low cost adsorbents in water treatment and purification. The aim of this study was to prepare composite materials based on lignocellulose and montmorillonite clay and subsequently evaluate their efficacy as adsorbents for heavy metal species and organic pollutants in aqueous solution. It was also important to assess the adsorption properties of the modified individual (uncombined) lignocellulose and montmorillonite. Lignocellulose and sodium-exchanged montmorillonite (NaMMT) clay were each separately modified with methyl methacrylate (MMA), methacrylic acid (MAA) and methacryloxypropyl trimethoxysilane (MPS) and used as adsorbents for the removal of heavy metals and dyes from aqueous solution. The lignocellulose and NaMMT were modified with MMA, MAA and MPS through free radical graft polymerisation and/or condensation reactions. NaMMT was also modified through Al-pillaring to give AlpMMT. The materials were characterised by fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and small angle X-ray scattering (SAXS) and characterisation results showed that the modification of the montmorillonite with MAA, MMA and MPS was successful. The modified lignocellulose and montmorillonite materials were evaluated for the adsorption of heavy metal ions (Cd2+ and Pb2+) from aqueous solution by the batch method. The adsorption isotherms and kinetics of both Cd2+ and Pb2+ onto the NaMMT clay, AlpMMT and lignocellulose materials are presented. The Langmuir isotherm was found to be the best fit for the adsorption of both heavy metals onto all the adsorbents. AlpMMT showed very poor uptake for heavy metals (both Cd2+ and Pb2+). PMMAgMMT, PMAAgMMT, PMAAgLig and PMPSgLig showed improved adsorption for both heavy metals. The mechanism of heavy metal adsorption onto the adsorbents was best represented by the pseudo second-order kinetic model. PMPSgLig, NaMMT and AlpMMT showed relatively high adsorption capacities for methyl orange, while the adsorption of neutral red was comparable for almost all the adsorbents. Neither the Langmuir model nor the Freundlich model was found to v adequately describe the adsorption process of dyes onto all the adsorbents. The pseudo second-order model was found to be the best fit to describe the adsorption mechanism of both dyes onto all the adsorbents. The modification of lignocellulose and montmorillonite with suitable organic groups can potentially produce highly effective and efficient adsorbents for the removal of both heavy metals and dyes from contaminated water. Novel adsorbent composite materials based on lignocellulose and montmorillonite clay (NaMMT) were also prepared and evaluated for the removal of pollutants (dyes and heavy metals) from aqueous solution. The lignocellulose-montmorillonite composites were prepared by in situ intercalative polymerisation, using methyl methacrylate, methacrylic acid and methacryloxypropyl trimethoxysilane (MPS) as coupling agents. The composite materials were characterised by FTIR, TGA, TEM and SAXS. SAXS diffractograms showed intercalated nanocomposites of PMMAgLig-NaMMT and PMAAgLig-NaMMT, whereas PMPSgLig-NaMMT showed a phase-separated composite and the same results were confirmed by TEM. The lignocellulose-montmorillonite composites were assessed for their adsorption properties for heavy metal ions (Cd2+ and Pb2+) and dyes (methyl orange and neutral red) from aqueous solution. Among these composite materials, only PMAAgLig-NaMMT showed a marked increase in the uptake of both Cd2+ and Pb2+ relative to lignocellulose and montmorillonite when used independently. The adsorption data were fitted to the Langmuir and Freundlich isotherms, as well as to the pseudo first-order and pseudo second-order kinetic models. The data were best described by the Langmuir isotherm and the pseudo second-order kinetic model. On the adsorption of dyes, only PMPSgLig-NaMMT showed enhanced adsorption of methyl orange (MetO) compared with lignocellulose and montmorillonite separately. The enhanced adsorption was attributed to the synergistic adsorption due to the presence of MPS, lignocellulose and NaMMT. Competitive adsorption studies were carried out from binary mixtures of MetO and Cd2+ or Pb2+ in aqueous solution. The adsorption process of MetO onto the composite material was found to follow the Freundlich adsorption model, while the mechanism of adsorption followed both the pseudo first-order and pseudo second-order models. This particular composite can be used for the simultaneous adsorption of both heavy metals and organic dyes from contaminated water. The adsorption of neutral red to the composite materials was comparable and the pseudo second-order kinetic model best described the adsorption mechanism.
- Full Text:
- Date Issued: 2011
Chemical transformations and phytochemical studies of bioactive components from extracts of Rosmarinus officinalis L
- Authors: Okoh, Omobola Oluranti
- Date: 2010
- Subjects: Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11331 , http://hdl.handle.net/10353/354 , Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts.
- Full Text:
- Date Issued: 2010
- Authors: Okoh, Omobola Oluranti
- Date: 2010
- Subjects: Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Language: English
- Type: Thesis , Doctoral , PhD (Chemistry)
- Identifier: vital:11331 , http://hdl.handle.net/10353/354 , Essences and essential oils , Rosmarinus , Lamiaceae , Solution (Chemistry) , Extractive distillation , Medicinal plants , Bioactive compounds
- Description: Variations in the yield, chemical composition, antibacterial, and antioxidant properties of the essential oils of Rosmarinus officinalis L. cultivated in Alice, Eastern Cape of South Africa over a period of 12 months using the solvent-free microwave extraction and traditional hydrodistillation methods were evaluated. The GC-MS analyses of the essential oils revealed the presence of 33 compounds with 1,8-cineole, a-pinene, camphor, verbenone, bornyl acetate and camphene constituting about 80 percent of the oils throughout the period of investigation, with the solvent-free microwave extraction method generally yielding more of the major components than the hydrodistillation method. Each of the major components of the oils varied in quantity and quality of yield at different periods of the year. The method of extraction and time of harvest are of importance to the quantity and quality of essential oil of Rosmarinus officinalis. Higher amounts of oxygenated monoterpenes such as borneol, camphor, terpene- 4-ol, linalool, a-terpeneol were present in the oil of SFME in comparison with HD. However, HD oil contained more monoterpene hydrocarbons such as a-pinene, camphene, β-pinene, myrcene, a-phellanderene, 1,8-cineole, trans- β-ocimene, γ-teprinene, and cis-sabinene hydrate than SFME extracted oil. Accumulation of monoterpene alcohols and ketones was observed during maturation process of Rosmarinus leaves. Quantitative evaluation of antibacterial activity, minimum inhibitory concentration values were determined using a serial microplate dilution method. The essential oils obtained using both methods of extraction were active against all the bacteria tested at a concentration of 10 mg mL-1. The minimum inhibitory concentrations for the SFME extracted oils ranged between 0.23 and 1.88 mg mL-1, while those of the HD extracted oils varied between 0.94 and 7.5 mg mL-1, thus suggesting that the oil obtained by solvent free microwave extraction was more active against bacteria than the oil obtained through hydrodistillation. The antioxidant and free radical scavenging activity of the obtained oils were tested by means of 1,1-diphenyl-2-picrylhydrazyl radical (DPPH+) assay and β- carotene bleaching test. In the DPPH+ assay, while the free radical scavenging activity of the oil obtained by SFME method showed percentage inhibitions of between 48.8 percent and 67 percent, the HD derived oil showed inhibitions of between 52.2 percent and 65.30 percent at concentrations of 0.33, 0.50 and 1.0 mg mL-1, respectively. In the β-carotene bleaching assay, the percentage inhibition increased with increasing concentration of both oils with a higher antioxidant activity of the oil obtained through the SFME than the HD method. Thin layer chromatography (TLC) was used to analyze the chemical composition of the extracts using three eluent solvent systems of varying polarities i. e. CEF, BEA and EMW and sprayed with vanillin-sulfuric acid. The chemical composition of the different extracts was similar with the exception of methanol and water extracts which had only one or two visible compounds after treating with vanillin-spray reagent. To evaluate the number of antibacterial compounds present in the fractions, bioautography was used against two most important nosocomial microorganisms. S. aureus (Gram positive) and E. coli (Gram negative). Nearly all the crude serial extraction fractions contained compounds that inhibited the growth of E. coli. The hexane extract had the most lines of inhibition followed by ethyl acetate. Bioassay-guided fractionation against E. coli was used to isolate antibacterial compounds. The largest number of antibacterial compounds occurred in the hexane fraction. Furthermore we tried to complete the characterization by extracting and studying other biologically important plant metabolites such as phenolic compounds to evaluate the antioxidant capacity of Rosmarinus extracts.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »