Spatial and temporal variations in metals in the sediment and water of selected Eastern Cape Estuaries, South Africa
- Authors: Orr, Kyla Kathleen
- Date: 2008
- Subjects: Marine sediments -- South Africa -- Eastern Cape , Metals -- South Africa -- Eastern Cape , Metals -- Environmental aspects , Estuaries -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuarine sediments -- South Africa -- Eastern Cape , Water quality -- South Africa -- Eastern Cape , Water pollution -- South Africa -- Eastern Cape , Environmental toxicology -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5769 , http://hdl.handle.net/10962/d1005457 , Marine sediments -- South Africa -- Eastern Cape , Metals -- South Africa -- Eastern Cape , Metals -- Environmental aspects , Estuaries -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuarine sediments -- South Africa -- Eastern Cape , Water quality -- South Africa -- Eastern Cape , Water pollution -- South Africa -- Eastern Cape , Environmental toxicology -- South Africa -- Eastern Cape
- Description: The spatio-temporal patterns in concentrations of selected metals within the sediment (Cd, Co, Cu, Fe, Pb, Ni and Zn) and water (Cd and Pb) of three permanently open estuaries (Kariega, Kowie, Great Fish) and six temporary open-closed estuaries (Mpekweni, East Kleinemonde, West Kleinemonde, Riet, Kasouga, Boknes) were investigated. The concentrations of metals were influenced by size composition and total organic content of the sediments. Enrichment factors (EFs), using Fe as a reference element, and baseline linear regression models for metals vs. Fe were calculated to assess the extent of metal enrichment in the sediments. The mean concentrations of metals in the sediments(mg·kg⁻¹) showed ranges of 0.28 – 2.31 for Cd, 1.26 – 6.24 Co, 0.69 – 6.93 for Cu, 2119 – 14912 for Fe, 2.29 –14.01 for Ni, 4.81 – 22.20 for Pb and 5.77 – 21.75 for Zn. Mean normalized enrichment factors ranged between 0.75 – 6.19 for Cd, 0.53 – 2.71 for Co, 0.22 – 0.84 for Cu, 0.30 – 1.87 for Ni, 0.99 – 3.17 for Pb and 0.14 – 0.98 for Zn. All nine estuaries had average enrichment factors of greater than 1 for Cd. In general there was no enrichment of Cu and Zn in the sediments of any of the estuaries included in this study (EFs < 1). The Kariega, East Kleinemonde, West Kleinemonde, Riet and Great Fish Estuaries showed some degree of enrichment for Co (1 < EF < 4), Ni (1 < EF < 2) and Pb (1 < EF < 4), while the Mpekweni, Kasouga, Boknes and Kowie Estuaries were unenriched with these metals (EF < 1). Enrichment factors for Cd, Co and Pb typically followed the development gradient along the estuaries, suggesting anthropogenic enrichment. The concentrations of Cd and Pb in the water of the nine estuaries were also determined. The average concentrations of Cd and Pb in the water (μg·ℓ⁻¹) ranged between 0.05 – 3.32 and 0.75 – 34.13 respectively. On average the concentrations of Cd and Pb in the water of all the estuaries were below the South African recommended water quality guidelines for coastal marine waters. Variations in metal concentrations associated with changes in hydrology (wet vs. dry season) were determined in the water and sediment of the Kariega, East Kleinemonde and Riet Estuaries. Cobalt, Pb and Ni enrichment in the Kariega Estuary sediment was significantly higher during the dry season, and the mean concentrations of Pb and Cd in the water column were 19-fold and 66-fold higher in the dry season. The elevated concentration of metals during the dry season could be related to accumulation of diffuse pollution from human activities within the catchment area. Conversely, inflow of fresh water into the estuary had the net effect of reducing the concentration and enrichment of these metals within the Kariega Estuary due to scouring and outflow of estuarine water and sediment into the marine environment. The temporal variations in metal concentrations and enrichment factors were less pronounced in the temporary open-closed estuaries than the permanently open Kariega Estuary. The observed trend can probably be related to the low anthropogenic impact within the catchment areas of these systems, and the relatively smaller size of the catchments. Significant spatial variations existed in metal enrichment in the sediment of both the East Kleinemonde and Riet estuaries, with the highest degrees of enrichment occurring in the sediments from the marine environment and lower reaches.
- Full Text:
- Date Issued: 2008
- Authors: Orr, Kyla Kathleen
- Date: 2008
- Subjects: Marine sediments -- South Africa -- Eastern Cape , Metals -- South Africa -- Eastern Cape , Metals -- Environmental aspects , Estuaries -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuarine sediments -- South Africa -- Eastern Cape , Water quality -- South Africa -- Eastern Cape , Water pollution -- South Africa -- Eastern Cape , Environmental toxicology -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5769 , http://hdl.handle.net/10962/d1005457 , Marine sediments -- South Africa -- Eastern Cape , Metals -- South Africa -- Eastern Cape , Metals -- Environmental aspects , Estuaries -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuarine sediments -- South Africa -- Eastern Cape , Water quality -- South Africa -- Eastern Cape , Water pollution -- South Africa -- Eastern Cape , Environmental toxicology -- South Africa -- Eastern Cape
- Description: The spatio-temporal patterns in concentrations of selected metals within the sediment (Cd, Co, Cu, Fe, Pb, Ni and Zn) and water (Cd and Pb) of three permanently open estuaries (Kariega, Kowie, Great Fish) and six temporary open-closed estuaries (Mpekweni, East Kleinemonde, West Kleinemonde, Riet, Kasouga, Boknes) were investigated. The concentrations of metals were influenced by size composition and total organic content of the sediments. Enrichment factors (EFs), using Fe as a reference element, and baseline linear regression models for metals vs. Fe were calculated to assess the extent of metal enrichment in the sediments. The mean concentrations of metals in the sediments(mg·kg⁻¹) showed ranges of 0.28 – 2.31 for Cd, 1.26 – 6.24 Co, 0.69 – 6.93 for Cu, 2119 – 14912 for Fe, 2.29 –14.01 for Ni, 4.81 – 22.20 for Pb and 5.77 – 21.75 for Zn. Mean normalized enrichment factors ranged between 0.75 – 6.19 for Cd, 0.53 – 2.71 for Co, 0.22 – 0.84 for Cu, 0.30 – 1.87 for Ni, 0.99 – 3.17 for Pb and 0.14 – 0.98 for Zn. All nine estuaries had average enrichment factors of greater than 1 for Cd. In general there was no enrichment of Cu and Zn in the sediments of any of the estuaries included in this study (EFs < 1). The Kariega, East Kleinemonde, West Kleinemonde, Riet and Great Fish Estuaries showed some degree of enrichment for Co (1 < EF < 4), Ni (1 < EF < 2) and Pb (1 < EF < 4), while the Mpekweni, Kasouga, Boknes and Kowie Estuaries were unenriched with these metals (EF < 1). Enrichment factors for Cd, Co and Pb typically followed the development gradient along the estuaries, suggesting anthropogenic enrichment. The concentrations of Cd and Pb in the water of the nine estuaries were also determined. The average concentrations of Cd and Pb in the water (μg·ℓ⁻¹) ranged between 0.05 – 3.32 and 0.75 – 34.13 respectively. On average the concentrations of Cd and Pb in the water of all the estuaries were below the South African recommended water quality guidelines for coastal marine waters. Variations in metal concentrations associated with changes in hydrology (wet vs. dry season) were determined in the water and sediment of the Kariega, East Kleinemonde and Riet Estuaries. Cobalt, Pb and Ni enrichment in the Kariega Estuary sediment was significantly higher during the dry season, and the mean concentrations of Pb and Cd in the water column were 19-fold and 66-fold higher in the dry season. The elevated concentration of metals during the dry season could be related to accumulation of diffuse pollution from human activities within the catchment area. Conversely, inflow of fresh water into the estuary had the net effect of reducing the concentration and enrichment of these metals within the Kariega Estuary due to scouring and outflow of estuarine water and sediment into the marine environment. The temporal variations in metal concentrations and enrichment factors were less pronounced in the temporary open-closed estuaries than the permanently open Kariega Estuary. The observed trend can probably be related to the low anthropogenic impact within the catchment areas of these systems, and the relatively smaller size of the catchments. Significant spatial variations existed in metal enrichment in the sediment of both the East Kleinemonde and Riet estuaries, with the highest degrees of enrichment occurring in the sediments from the marine environment and lower reaches.
- Full Text:
- Date Issued: 2008
Home range dynamics of spotted grunter, pomadasys commersonnii, in a South African intermittently open estuary
- Authors: O'Connell, Bronwyn Anne
- Date: 2008
- Subjects: Grunts (Fishes) -- South Africa -- Eastern Cape , Pomadasys -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine fishes -- Habitat -- South Africa -- Eastern Cape , Fishery management -- South Africa -- Eastern Cape , Fishes -- Home range , Fishes -- Home range -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5286 , http://hdl.handle.net/10962/d1005130 , Grunts (Fishes) -- South Africa -- Eastern Cape , Pomadasys -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine fishes -- Habitat -- South Africa -- Eastern Cape , Fishery management -- South Africa -- Eastern Cape , Fishes -- Home range , Fishes -- Home range -- South Africa -- Eastern Cape
- Description: The spotted grunter (Pomadasys commersonnii) is an important, estuarine-dependent, fishery species in southern Africa. Since estuaries are essential habitats in the life history of this species, the quantification of area use patterns and movements is important for fisheries management. In this study, acoustic telemetry was used to investigate movements, use of habitat and home range dynamics of spotted grunter in the small intermittently open East Kleinemonde Estuary on the Eastern Cape coast of South Africa. Nine spotted grunter (range: 326-489mm TL) were surgically equipped with uniquely coded acoustic transmitters. Positional fixes were obtained by manual tracking tagged individuals on six days and six nights during five tracking sessions from March to November 2004. In addition, five stationary data-logging receivers, moored at specific locations from the mouth to the top of the estuary provided additional long-term monitoring. Kernel home ranges (95% UD) varied in size (26 296-165 321m²) but were all located in a common high use area situated between 300-1 300m from the estuary mouth, which coincided with the highest abundance of prey items. There was no significant variation in home range size [C² (N = 9, df = 4) = 4.18; p = 0.38] between the temporally segregated tracking sessions (over nine months). The persistence of these home range estimates were confirmed by the long-term data-logging receivers. There was no significant diel variation in home range size [F(4, 64) = 0.05, p = 0.99] or core area size [F(4, 64) = 1.40, p = 0.25]. Fish length showed negative, although not significant, relationships between home range size (p = 0.225); number of home range areas (p = 0.065); core area size (p = 0.512) and home range length (p = 0.320). Use of habitat and home range dynamics of spotted grunter in the East Kleinemonde Estuary were consistent over the nine month study period, and they appeared to be influenced more by biotic than abiotic factors. However, when the mouth opened at the end of the study, most tagged fish vacated their home ranges and emigrated to sea.
- Full Text:
- Date Issued: 2008
- Authors: O'Connell, Bronwyn Anne
- Date: 2008
- Subjects: Grunts (Fishes) -- South Africa -- Eastern Cape , Pomadasys -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine fishes -- Habitat -- South Africa -- Eastern Cape , Fishery management -- South Africa -- Eastern Cape , Fishes -- Home range , Fishes -- Home range -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5286 , http://hdl.handle.net/10962/d1005130 , Grunts (Fishes) -- South Africa -- Eastern Cape , Pomadasys -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Estuarine fishes -- South Africa -- Eastern Cape , Estuarine fishes -- Habitat -- South Africa -- Eastern Cape , Fishery management -- South Africa -- Eastern Cape , Fishes -- Home range , Fishes -- Home range -- South Africa -- Eastern Cape
- Description: The spotted grunter (Pomadasys commersonnii) is an important, estuarine-dependent, fishery species in southern Africa. Since estuaries are essential habitats in the life history of this species, the quantification of area use patterns and movements is important for fisheries management. In this study, acoustic telemetry was used to investigate movements, use of habitat and home range dynamics of spotted grunter in the small intermittently open East Kleinemonde Estuary on the Eastern Cape coast of South Africa. Nine spotted grunter (range: 326-489mm TL) were surgically equipped with uniquely coded acoustic transmitters. Positional fixes were obtained by manual tracking tagged individuals on six days and six nights during five tracking sessions from March to November 2004. In addition, five stationary data-logging receivers, moored at specific locations from the mouth to the top of the estuary provided additional long-term monitoring. Kernel home ranges (95% UD) varied in size (26 296-165 321m²) but were all located in a common high use area situated between 300-1 300m from the estuary mouth, which coincided with the highest abundance of prey items. There was no significant variation in home range size [C² (N = 9, df = 4) = 4.18; p = 0.38] between the temporally segregated tracking sessions (over nine months). The persistence of these home range estimates were confirmed by the long-term data-logging receivers. There was no significant diel variation in home range size [F(4, 64) = 0.05, p = 0.99] or core area size [F(4, 64) = 1.40, p = 0.25]. Fish length showed negative, although not significant, relationships between home range size (p = 0.225); number of home range areas (p = 0.065); core area size (p = 0.512) and home range length (p = 0.320). Use of habitat and home range dynamics of spotted grunter in the East Kleinemonde Estuary were consistent over the nine month study period, and they appeared to be influenced more by biotic than abiotic factors. However, when the mouth opened at the end of the study, most tagged fish vacated their home ranges and emigrated to sea.
- Full Text:
- Date Issued: 2008
Ecological role of free-living bacteria in the microbial food web of the temporarily open/closed East Kleinemonde Estuary, South Africa
- Authors: Allan, Elizabeth Louise
- Date: 2008
- Subjects: Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5666 , http://hdl.handle.net/10962/d1005351 , Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Description: The main aim of this study was to assess the “top-down” and “bottom-up” control of bacterial production in the small temporarily open/closed East Kleinemonde Estuary, situated on the south-eastern coastline of southern Africa. Spatial and temporal patterns in bacterial abundance, biomass and production and the importance of abiotic and biotic factors were investigated over the period May 2006 to April 2007. The trophic interactions between bacteria, phytoplankton, nanoflagellates (< 20 μm), microzooplankton (< 200 μm) and mesozooplankton (< 2 000 μm) were investigated during winter and summer. Bacterial abundance, biomass and production ranged between 1.00 × 10⁹ and 4.93 × 10⁹ cells 1⁻¹, 32.4 and 109 μg C 1⁻¹ and 0.01 and 1.99 μg C 1⁻¹ h⁻¹, respectively. With a few exceptions there were no spatial patterns in the values. Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Nanoflagellate and bacterial abundances were significantly correlated to one another (lower reaches: r = 0.818, p < 0.001; middle reaches: r = 0.628, p < 0.001; upper reaches: r = 0.484, p < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the mean number of virus particles within each bacterial cell during this study demonstrated no temporal or spatial patterns and ranged from 0.5 to 6.1 % and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% of the total which suggests that viral lysis represented a very important source of bacterial mortality during this study. The biological interactions between the selected components of the plankton community demonstrated that among the heterotrophic components of the plankton, the nanoflagellates were identified as the most important consumers of bacteria and small phytoplankton cells (< 20 μm). In the presence of microzooplankton the impact of the nanoflagellates on both the bacteria and phytoplankton was reduced, indicating that larger heterotrophs were preying upon the nanoflagellates. Mesozooplankton, however, appeared to exert the greatest impact on nanoflagellates. In the cascading experiments, the data suggest that mesozooplankton consume nanoflagellates, which resulted in a decrease in the predation impact of these organisms on the bacteria. This result is consistent with predator-prey cascades. The presence of the larger heterotrophs therefore, mediates the interactions between the primary bacterivores, the nanoflagellates, and the bacteria within the temporarily open/closed East Kleinemonde Estuary.
- Full Text:
- Date Issued: 2008
- Authors: Allan, Elizabeth Louise
- Date: 2008
- Subjects: Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5666 , http://hdl.handle.net/10962/d1005351 , Bacterial growth -- South Africa -- Eastern Cape , Estuarine ecology -- South Africa -- Eastern Cape , Estuaries -- South Africa -- Eastern Cape , Microbial ecology -- South Africa -- Eastern Cape , Nutrient cycles -- South Africa -- Eastern Cape , Food chains (Ecology)
- Description: The main aim of this study was to assess the “top-down” and “bottom-up” control of bacterial production in the small temporarily open/closed East Kleinemonde Estuary, situated on the south-eastern coastline of southern Africa. Spatial and temporal patterns in bacterial abundance, biomass and production and the importance of abiotic and biotic factors were investigated over the period May 2006 to April 2007. The trophic interactions between bacteria, phytoplankton, nanoflagellates (< 20 μm), microzooplankton (< 200 μm) and mesozooplankton (< 2 000 μm) were investigated during winter and summer. Bacterial abundance, biomass and production ranged between 1.00 × 10⁹ and 4.93 × 10⁹ cells 1⁻¹, 32.4 and 109 μg C 1⁻¹ and 0.01 and 1.99 μg C 1⁻¹ h⁻¹, respectively. With a few exceptions there were no spatial patterns in the values. Bacterial abundance, biomass and production, however, demonstrated a distinct temporal pattern with the lowest values consistently recorded during the winter months. Nanoflagellate and bacterial abundances were significantly correlated to one another (lower reaches: r = 0.818, p < 0.001; middle reaches: r = 0.628, p < 0.001; upper reaches: r = 0.484, p < 0.05) suggesting a strong predator-prey relationship. The frequency of visibly infected bacterial cells and the mean number of virus particles within each bacterial cell during this study demonstrated no temporal or spatial patterns and ranged from 0.5 to 6.1 % and 12.0 to 37.5 virus particles per bacterium, respectively. Viral infection and lysis was thus a constant source of bacterial mortality throughout the year. The estimated percentage of bacterial production removed by viral lysis ranged between 7.8 and 88.9% of the total which suggests that viral lysis represented a very important source of bacterial mortality during this study. The biological interactions between the selected components of the plankton community demonstrated that among the heterotrophic components of the plankton, the nanoflagellates were identified as the most important consumers of bacteria and small phytoplankton cells (< 20 μm). In the presence of microzooplankton the impact of the nanoflagellates on both the bacteria and phytoplankton was reduced, indicating that larger heterotrophs were preying upon the nanoflagellates. Mesozooplankton, however, appeared to exert the greatest impact on nanoflagellates. In the cascading experiments, the data suggest that mesozooplankton consume nanoflagellates, which resulted in a decrease in the predation impact of these organisms on the bacteria. This result is consistent with predator-prey cascades. The presence of the larger heterotrophs therefore, mediates the interactions between the primary bacterivores, the nanoflagellates, and the bacteria within the temporarily open/closed East Kleinemonde Estuary.
- Full Text:
- Date Issued: 2008
- «
- ‹
- 1
- ›
- »