Environmental niche patterns of native and non-native fishes within an invaded African river system
- Kadye, Wilbert T, Booth, Anthony J
- Authors: Kadye, Wilbert T , Booth, Anthony J
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124407 , vital:35605 , https://doi.10.1111/jfb.13988
- Description: To test ecological niche theory, this study investigated the spatial patterns and the environmental niches of native and non-native fishes within the invaded Great Fish River system, South Africa. For the native fishes, there were contrasting environmental niche breadths that varied from being small to being large and overlapped for most species, except minnows that were restricted to headwater tributaries. In addition, there was high niche overlap in habitat association among fishes with similar distribution. It was therefore inferred that habitat filtering-driven spatial organization was important in explaining native species distribution patterns. In comparison, most non-native fishes were found to have broad environmental niches and these fishes showed high tolerance to environmental conditions, which generally supported the niche opportunity hypothesis. The proliferation of multiple non-native fishes in the mainstem section suggest that they form a functional assemblage that is probably facilitated by the anthropogenic modification of flow regimes through inter-basin water transfer. Based on the distribution patterns observed in the study, it was inferred that there was a likelihood of negative interactions between native and nonnative fishes. Such effects are likely to be exacerbated by altered flow regime that was likely to have negative implications for native ichthyofauna.
- Full Text:
- Date Issued: 2019
- Authors: Kadye, Wilbert T , Booth, Anthony J
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124407 , vital:35605 , https://doi.10.1111/jfb.13988
- Description: To test ecological niche theory, this study investigated the spatial patterns and the environmental niches of native and non-native fishes within the invaded Great Fish River system, South Africa. For the native fishes, there were contrasting environmental niche breadths that varied from being small to being large and overlapped for most species, except minnows that were restricted to headwater tributaries. In addition, there was high niche overlap in habitat association among fishes with similar distribution. It was therefore inferred that habitat filtering-driven spatial organization was important in explaining native species distribution patterns. In comparison, most non-native fishes were found to have broad environmental niches and these fishes showed high tolerance to environmental conditions, which generally supported the niche opportunity hypothesis. The proliferation of multiple non-native fishes in the mainstem section suggest that they form a functional assemblage that is probably facilitated by the anthropogenic modification of flow regimes through inter-basin water transfer. Based on the distribution patterns observed in the study, it was inferred that there was a likelihood of negative interactions between native and nonnative fishes. Such effects are likely to be exacerbated by altered flow regime that was likely to have negative implications for native ichthyofauna.
- Full Text:
- Date Issued: 2019
An endangered seahorse selectively chooses an artificial structure
- Claassens, Louw, Booth, Anthony J, Hodgson, Alan N
- Authors: Claassens, Louw , Booth, Anthony J , Hodgson, Alan N
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123718 , vital:35486 , https://doi.10.1007/s10641-018-0732-4
- Description: The development of a residential marina estate within the Knysna estuary, South Africa, introduced Reno mattresses (horizontal wire cages filled with rocks) as a novel habitat for the endangered Knysna seahorse Hippocampus capensis. Consistently high seahorse densities on these artificial structures, despite the availability of seagrass habitat, begged the question of whether this habitat was chosen by the seahorse in preference to natural vegetation. An in situ habitat choice experiment was conducted which focused on the choice made by adult H. capensis between natural vegetation (Zostera capensis) and artificial (Reno mattress) habitat within a choice chamber. Seahorses were significantly more likely to move away from Z. capensis onto a Reno mattress structure or remain on this structure. This study concludes that higher H. capensis densities on Reno mattresses within Thesen Islands Marina are owing to some positive feature of this habitat and the underlying processes responsible for the choice made by this species (additional food, holdfasts, protection) can now be investigated.
- Full Text:
- Date Issued: 2018
- Authors: Claassens, Louw , Booth, Anthony J , Hodgson, Alan N
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123718 , vital:35486 , https://doi.10.1007/s10641-018-0732-4
- Description: The development of a residential marina estate within the Knysna estuary, South Africa, introduced Reno mattresses (horizontal wire cages filled with rocks) as a novel habitat for the endangered Knysna seahorse Hippocampus capensis. Consistently high seahorse densities on these artificial structures, despite the availability of seagrass habitat, begged the question of whether this habitat was chosen by the seahorse in preference to natural vegetation. An in situ habitat choice experiment was conducted which focused on the choice made by adult H. capensis between natural vegetation (Zostera capensis) and artificial (Reno mattress) habitat within a choice chamber. Seahorses were significantly more likely to move away from Z. capensis onto a Reno mattress structure or remain on this structure. This study concludes that higher H. capensis densities on Reno mattresses within Thesen Islands Marina are owing to some positive feature of this habitat and the underlying processes responsible for the choice made by this species (additional food, holdfasts, protection) can now be investigated.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »