In vitro Anti-trypanosomal activities of indanone-based chalcones:
- Beteck, Richard M, Legoabe, Lesetje J, Isaacs, Michelle, Hoppe, Heinrich C
- Authors: Beteck, Richard M , Legoabe, Lesetje J , Isaacs, Michelle , Hoppe, Heinrich C
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/158280 , vital:40169 , https://doi.org/10.3354/meps12953
- Description: Human African trypanosomiasis is a neglected infectious disease that affects mostly people living in the rural areas of Africa. Current treatment options are limited to just four drugs that have been in use of four to nine decades. The life-threatening toxic side-effects associated with the use of these drugs are disconcerting. Poor efficacy, low oral bioavailability, and high cost are other shortcomings of current HAT treatments. Evaluating the potentials of known hits for other therapeutic areas may be a fast and convenient method to discover new hit compounds against alternative targets. A library of 34 known indanone based chalcones was screened against T.b. brucei and nine potent hits, having IC50 values between 0.5–8.9 µM, were found. The SAR studies of this series could provide useful information in guiding future exploration of this class of compounds in search of more potent, safe, and low cost anti-trypanosomal agents.
- Full Text:
- Date Issued: 2019
- Authors: Beteck, Richard M , Legoabe, Lesetje J , Isaacs, Michelle , Hoppe, Heinrich C
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/158280 , vital:40169 , https://doi.org/10.3354/meps12953
- Description: Human African trypanosomiasis is a neglected infectious disease that affects mostly people living in the rural areas of Africa. Current treatment options are limited to just four drugs that have been in use of four to nine decades. The life-threatening toxic side-effects associated with the use of these drugs are disconcerting. Poor efficacy, low oral bioavailability, and high cost are other shortcomings of current HAT treatments. Evaluating the potentials of known hits for other therapeutic areas may be a fast and convenient method to discover new hit compounds against alternative targets. A library of 34 known indanone based chalcones was screened against T.b. brucei and nine potent hits, having IC50 values between 0.5–8.9 µM, were found. The SAR studies of this series could provide useful information in guiding future exploration of this class of compounds in search of more potent, safe, and low cost anti-trypanosomal agents.
- Full Text:
- Date Issued: 2019
Quinolone-isoniazid hybrids: Synthesis and preliminary in vitro cytotoxicity and anti-tuberculosis evaluation
- Beteck, Richard M, Seldon, Ronnett, Khanye, Setshaba D, Legoabe, Lesetja J, Hoppe, Heinrich C, Laming, Dustin, Jordaan, Audrey, Warner, Digby F
- Authors: Beteck, Richard M , Seldon, Ronnett , Khanye, Setshaba D , Legoabe, Lesetja J , Hoppe, Heinrich C , Laming, Dustin , Jordaan, Audrey , Warner, Digby F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123151 , vital:35410 , https://doi.org/10.1039/C8MD00480C
- Description: Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide–hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2–8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions −1 and −3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
- Full Text:
- Date Issued: 2019
- Authors: Beteck, Richard M , Seldon, Ronnett , Khanye, Setshaba D , Legoabe, Lesetja J , Hoppe, Heinrich C , Laming, Dustin , Jordaan, Audrey , Warner, Digby F
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123151 , vital:35410 , https://doi.org/10.1039/C8MD00480C
- Description: Herein, we propose novel quinolones incorporating an INH moiety as potential drug templates against TB. The quinolone-based compounds bearing an INH moiety attached via a hydrazide–hydrazone bond were synthesised and evaluated against Mycobacterium tuberculosis H37Rv (MTB). The compounds were also evaluated for cytotoxicity against HeLa cell lines. These compounds showed significant activity (MIC90) against MTB in the range of 0.2–8 μM without any cytotoxic effects. Compounds 10 (MIC90; 0.9 μM), 11 (MIC90; 0.2 μM), 12 (MIC90; 0.8 μM) and compound 15 (MIC90; 0.8 μM), the most active compounds in this series, demonstrate activities on par with INH and superior to those reported for the fluoroquinolones. The SAR analysis suggests that the nature of substituents at positions −1 and −3 of the quinolone nucleus influences anti-MTB activity. Aqueous solubility evaluation and in vitro metabolic stability of compound 12 highlights favourable drug-like properties for this compound class.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »