- Title
- Preparation and characterization of sodium alginate-based dissolvable bandages as potential wound dressings
- Creator
- Ndlovu, Sindi Prescila
- Subject
- Nanostructured materials
- Date
- 2020
- Type
- Thesis
- Type
- Masters
- Type
- MSc (Chemistry)
- Identifier
- http://hdl.handle.net/10353/18800
- Identifier
- vital:42734
- Description
- Burn wounds are among the leading causes of mortality and morbidity globally. Burn wounds are painful, cause social isolation and causes post-traumatic stress disorder (PTSD) due to prolonged hospital treatment. The challenges encountered in the treatment of burn wounds are infections resulting from the use of wound dressings that do not protect the wounds from microbial invasion. Sodium alginate-based dissolvable bandages were prepared and encapsulated with various antibiotics (ampicillin and ciprofloxacin) and nanoparticles (i.e. zinc oxide and silver). The dissolvable bandages were characterized by FTIR, SEM/EDX, TEM, XRD and TGA. Furthermore, the porosity, water uptake, biodegradation, antibacterial studies, and water vapour transmittance properties of the bandages were also studied. The prepared sodium alginate-based dissolvable bandage incorporated with varied amount of drugs (such as ampicillin, ciprofloxacin, zinc oxide and silver nanoparticle) exhibited good porosity, high water uptake, excellent WVTR with sustained drug release profiles. The loading of ZnO Nps, CLP/ZnO Nps and Ag Nps/CLP into the bandages improved the antibacterial activity of the bandages against both gram-negative and gram-positive strains of bacteria. XRD confirmed the amorphous nature of the dissolvable bandage and the absence of free drugs. FTIR revealed the successful encapsulation of the antibiotics and nanoparticle into the dissolvable bandages. The dissolvable bandages exhibited high water uptake ranging from 870-4468% with good porosity suggesting that they can absorb large amount of wound exudates. The drug release for all the bandages obeyed the Korsemeyer Peppas drug release model with n values in the range 0.1-1.0. The results obtained indicate that the bandages are potential wound dressings for burns and for patients with sensitive skins.
- Format
- 177 leaves
- Format
- Publisher
- University of Fort Hare
- Publisher
- Faculty of Science and Agriculture
- Language
- English
- Rights
- University of Fort Hare
- Hits: 816
- Visitors: 876
- Downloads: 76
Thumbnail | File | Description | Size | Format | |||
---|---|---|---|---|---|---|---|
View Details | SOURCE1 | Ndlovu_201304407_Chemistry.pdf | 3 MB | Adobe Acrobat PDF | View Details |