A Sn (iv) porphyrin with mitochondria targeting properties for enhanced photodynamic activity against MCF-7 cells
- Babu, Balaji, Mack, John, Nyokong, Tebello
- Authors: Babu, Balaji , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230897 , vital:49829 , xlink:href="https://doi.org/10.1039/D2NJ00350C"
- Description: Two readily synthesized Sn(IV) porphyrins (SnP, SnPH) have been prepared with and without the cationic triphenylphosphonium moiety (TPP+), which have high singlet oxygen quantum yields (ca. 0.72) and long triplet state lifetimes. The Sn(IV) porphyrin with a TPP+ moiety (SnPH) exhibits favorable photodynamic activity against MCF-7 cells with IC50 values of 2.9 μM. SnPH exhibits higher cellular uptake than SnP in MCF-7 cells. A Rhodamine 123 (Rh123) assay showed that SnPH targets mitochondria and induces apoptosis by generating reactive oxygen species. The results demonstrate that this structural modification strategy merits further in-depth study.
- Full Text:
- Date Issued: 2022
- Authors: Babu, Balaji , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230897 , vital:49829 , xlink:href="https://doi.org/10.1039/D2NJ00350C"
- Description: Two readily synthesized Sn(IV) porphyrins (SnP, SnPH) have been prepared with and without the cationic triphenylphosphonium moiety (TPP+), which have high singlet oxygen quantum yields (ca. 0.72) and long triplet state lifetimes. The Sn(IV) porphyrin with a TPP+ moiety (SnPH) exhibits favorable photodynamic activity against MCF-7 cells with IC50 values of 2.9 μM. SnPH exhibits higher cellular uptake than SnP in MCF-7 cells. A Rhodamine 123 (Rh123) assay showed that SnPH targets mitochondria and induces apoptosis by generating reactive oxygen species. The results demonstrate that this structural modification strategy merits further in-depth study.
- Full Text:
- Date Issued: 2022
Ga III triarylcorroles with push–pull substitutions
- Niu, Yingjie, Wang, Lin, Guo, Yingxin, Zhu, Weihua, Soy, Rodah C, Babu, Balaji, Mack, John, Nyokong, Tebello, Xu, Haijun, Liang, Xu
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
- Authors: Niu, Yingjie , Wang, Lin , Guo, Yingxin , Zhu, Weihua , Soy, Rodah C , Babu, Balaji , Mack, John , Nyokong, Tebello , Xu, Haijun , Liang, Xu
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300079 , vital:57890 , xlink:href="https://doi.org/10.1039/D2DT01262F"
- Description: Two A2B type H3corroles and two GaIIItriarylcorroles with carbazole substitutions at 10-positions were synthesized and characterized. An analysis of structure–property relationships of the corroles has been carried out by investigating the optical spectroscopy of the dyes to trends predicted in DFT and TD-DFT calculations. Interestingly, the photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) activity properties of the GaIIItriarylcorroles were determined against the MCF-7 breast cancer line, and Staphyloccocus aureus (S. aureus) and Escherichia coli (E. coli), respectively. The cationic G-2Q species exhibited the most favorable properties with an IC50 value of 7.8 μM against MCF-7 cells, and Log reduction values of 7.78 and 3.26 against planktonic S. aureus and E. coli at 0.5 and 10 μM, respectively.
- Full Text:
- Date Issued: 2022
Novel cationic-chalcone phthalocyanines for photodynamic therapy eradication of S. aureus and E. coli bacterial biofilms and MCF-7 breast cancer
- Openda, Yolande Ikala, Babu, Balaji, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
- Authors: Openda, Yolande Ikala , Babu, Balaji , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300129 , vital:57895 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.102863"
- Description: New tetrasubstituted zinc (II) and indium (III) phthalocyanines bearing dimethylamino chalcone group (complexes 3 and 4) as well as their quaternized analogs (3a and 4a) have been assessed for their photodynamic therapy (PDT) of cancer as well as photodynamic antimicrobial chemotherapy activities against biofilms and planktonic cultures of pathogenic bacteria of Staphylococcus aureus and Escherichia coli. Compared to the non-quaternized phthalocyanines 3 and 4, the cationic phthalocyanines 3a and 4a exhibit a higher photodynamic inactivation against the planktonic cells with log reduction values above 9 at a concentration of 1.25 µM. This was attributed to the positive charge which enhances cellular uptake. More interestingly, 3a and 4a show a higher photodynamic inactivation (less than 3% of S. aureus survived) on their biofilm counterparts thanks to their stronger affinity to these cells. 3a and 4a Pcs also exhibited interesting PDT activity against MCF-7 cancer cells giving IC50 values of 17.9 and 7.4 μM, respectively following 15 min irradiation. The obtained results in this work show that the positively charged phthalocyanines 3a and 4a are potential antibacterial photosensitizers that show some selectivity toward the Gram-positive and Gram-negative bacteria as well as MCF-7 breasts cancer cells.
- Full Text:
- Date Issued: 2022
- «
- ‹
- 1
- ›
- »