A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40
- Edkins, Adrienne L, Ludewig, M H, Blatch, Gregory L
- Authors: Edkins, Adrienne L , Ludewig, M H , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6465 , http://hdl.handle.net/10962/d1005794 , http://dx.doi.org/10.1016/j.biocel.2004.01.016
- Description: The process of assisted protein folding, characteristic of members of the heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) molecular chaperone families, is important for maintaining the structural integrity of cellular protein machinery under normal and stressful conditions. Hsp70 and Hsp40 cooperate to bind non-native protein conformations in a process of adenosine triphosphate (ATP)-regulated assisted protein folding. We have analysed the molecular chaperone activity of the cytoplasmic inducible Hsp70 from Trypanosoma cruzi (TcHsp70) and its interactions with its potential partner Hsp40s (T. cruzi DnaJ protein 1 [Tcj1] and T. cruzi DnaJ protein 2 [Tcj2]). Histidine-tagged TcHsp70 (His-TcHsp70), Tcj1 (Tcj1-His) and Tcj2 (His-Tcj2) were over-produced in Escherichia coli and purified by nickel affinity chromatography. The in vitro basal specific ATP hydrolysis activity (ATPase activity) of His-TcHsp70 was determined as 40 nmol phosphate/min/mg protein, significantly higher than that reported for other Hsp70s. The basal specific ATPase activity was stimulated to a maximal level of 60 nmol phosphate/min/mg protein in the presence of His-Tcj2 and a model substrate, reduced carboxymethylated α-lactalbumin. In vivo complementation assays showed that Tcj2 was able to overcome the temperature sensitivity of the ydj1 mutant Saccharomyces cerevisiae strain JJ160, suggesting that Tcj2 may be functionally equivalent to the yeast Hsp40 homologue (yeast DnaJ protein 1, Ydj1). These data suggest that Tcj2 is involved in cytoprotection in a similar fashion to Ydj1, and that TcHsp70 and Tcj2 may interact in a nucleotide-regulated process of chaperone-assisted protein folding.
- Full Text:
- Date Issued: 2004
- Authors: Edkins, Adrienne L , Ludewig, M H , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6465 , http://hdl.handle.net/10962/d1005794 , http://dx.doi.org/10.1016/j.biocel.2004.01.016
- Description: The process of assisted protein folding, characteristic of members of the heat shock protein 70 (Hsp70) and heat shock protein 40 (Hsp40) molecular chaperone families, is important for maintaining the structural integrity of cellular protein machinery under normal and stressful conditions. Hsp70 and Hsp40 cooperate to bind non-native protein conformations in a process of adenosine triphosphate (ATP)-regulated assisted protein folding. We have analysed the molecular chaperone activity of the cytoplasmic inducible Hsp70 from Trypanosoma cruzi (TcHsp70) and its interactions with its potential partner Hsp40s (T. cruzi DnaJ protein 1 [Tcj1] and T. cruzi DnaJ protein 2 [Tcj2]). Histidine-tagged TcHsp70 (His-TcHsp70), Tcj1 (Tcj1-His) and Tcj2 (His-Tcj2) were over-produced in Escherichia coli and purified by nickel affinity chromatography. The in vitro basal specific ATP hydrolysis activity (ATPase activity) of His-TcHsp70 was determined as 40 nmol phosphate/min/mg protein, significantly higher than that reported for other Hsp70s. The basal specific ATPase activity was stimulated to a maximal level of 60 nmol phosphate/min/mg protein in the presence of His-Tcj2 and a model substrate, reduced carboxymethylated α-lactalbumin. In vivo complementation assays showed that Tcj2 was able to overcome the temperature sensitivity of the ydj1 mutant Saccharomyces cerevisiae strain JJ160, suggesting that Tcj2 may be functionally equivalent to the yeast Hsp40 homologue (yeast DnaJ protein 1, Ydj1). These data suggest that Tcj2 is involved in cytoprotection in a similar fashion to Ydj1, and that TcHsp70 and Tcj2 may interact in a nucleotide-regulated process of chaperone-assisted protein folding.
- Full Text:
- Date Issued: 2004
Isolation of genes encoding heat shock protein 70 (hsp70s) from the coelacanth, Latimeria chalumnae
- Modisakeng, Keoagile W, Dorrington, Rosemary A, Blatch, Gregory L
- Authors: Modisakeng, Keoagile W , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6459 , http://hdl.handle.net/10962/d1005788
- Description: Under stress conditions, proteins unfold or misfold, leading to the formation of aggregates. Molecular chaperones can be defined as proteins that facilitate the correct folding of other proteins, so that they attain a stable tertiary structure. In addition, they promote the refolding and degradation of denatured proteins after cellular stress. Heat shock proteins form one of the main classes of molecular chaperones. We are interested in determining if the genome of the coelacanth (Latimeria chalumnae) encodes a heat shock protein-based cytoprotection mechanism. We have isolated 50 kb and larger coelacanth genomic DNA from frozen skin tissue of L. chalumnae. From the alignments of several fish Hsp70 proteins, conserved regions at the N- and C-termini were identified. Codon usage tables were constructed from published coelacanth genes and degenerate primers were designed to isolate the full-length hsp70 gene and regions encoding the ATPase and the peptide binding domains. Since it is known that the tilapia and Fugu inducible hsp70 genes are intronless, we proceeded on the assumption that a coelacanth inducible hsp70 would also be intronless. A large fragment (1840 bp) encoding most of a coelacanth Hsp70 protein, and two partial fragments encoding a coelacanth Hsp70ATPase domain (1048 bp) and peptide binding domain (873 bp), were isolated by polymerase chain reaction amplification. Protein sequences translated from all the nucleotide sequences were closely identical to typical Hsp70s. This is the first study to provide evidence for a cytoprotection mechanism in the coelacanth involving an inducible Hsp70.
- Full Text:
- Date Issued: 2004
- Authors: Modisakeng, Keoagile W , Dorrington, Rosemary A , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6459 , http://hdl.handle.net/10962/d1005788
- Description: Under stress conditions, proteins unfold or misfold, leading to the formation of aggregates. Molecular chaperones can be defined as proteins that facilitate the correct folding of other proteins, so that they attain a stable tertiary structure. In addition, they promote the refolding and degradation of denatured proteins after cellular stress. Heat shock proteins form one of the main classes of molecular chaperones. We are interested in determining if the genome of the coelacanth (Latimeria chalumnae) encodes a heat shock protein-based cytoprotection mechanism. We have isolated 50 kb and larger coelacanth genomic DNA from frozen skin tissue of L. chalumnae. From the alignments of several fish Hsp70 proteins, conserved regions at the N- and C-termini were identified. Codon usage tables were constructed from published coelacanth genes and degenerate primers were designed to isolate the full-length hsp70 gene and regions encoding the ATPase and the peptide binding domains. Since it is known that the tilapia and Fugu inducible hsp70 genes are intronless, we proceeded on the assumption that a coelacanth inducible hsp70 would also be intronless. A large fragment (1840 bp) encoding most of a coelacanth Hsp70 protein, and two partial fragments encoding a coelacanth Hsp70ATPase domain (1048 bp) and peptide binding domain (873 bp), were isolated by polymerase chain reaction amplification. Protein sequences translated from all the nucleotide sequences were closely identical to typical Hsp70s. This is the first study to provide evidence for a cytoprotection mechanism in the coelacanth involving an inducible Hsp70.
- Full Text:
- Date Issued: 2004
Molecular chaperones in biology, medicine and protein biotechnology
- Boshoff, Aileen, Nicoll, William S, Hennessy, Fritha, Ludewig, M H, Daniel, Sheril, Modisakeng, Keoagile W, Shonhai, Addmore, McNamara, Caryn, Bradley, Graeme, Blatch, Gregory L
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
- Authors: Boshoff, Aileen , Nicoll, William S , Hennessy, Fritha , Ludewig, M H , Daniel, Sheril , Modisakeng, Keoagile W , Shonhai, Addmore , McNamara, Caryn , Bradley, Graeme , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6457 , http://hdl.handle.net/10962/d1004479
- Description: Molecular chaperones consist of several highly conserved families of proteins, many of which consist of heat shock proteins. The primary function of molecular chaperones is to facilitate the folding or refolding of proteins, and therefore they play an important role in diverse cellular processes including protein synthesis, protein translocation, and the refolding or degradation of proteins after cell stress. Cells are often exposed to different stressors, resulting in protein misfolding and aggregation. It is now well established that the levels of certain molecular chaperones are elevated during stress to provide protection to the cell. The focus of this review is on the impact of molecular chaperones in biology, medicine and protein biotechnology, and thus covers both fundamental and applied aspects of chaperone biology. Attention is paid to the functions and applications of molecular chaperones from bacterial and eukaryotic cells, focusing on the heat shock proteins 90 (Hsp90), 70 (Hsp70) and 40 (Hsp40) classes of chaperones, respectively. The role of these classes of chaperones in human diseases is discussed, as well as the parts played by chaperones produced by the causative agents of malaria and trypanosomiasis. Recent advances have seen the application of chaperones in improving the yields of a particular target protein in recombinant protein production. The prospects for the targeted use of molecular chaperones for the over-production of recombinant proteins is critically reviewed, and current research on these chaperones at Rhodes University is also discussed.
- Full Text:
- Date Issued: 2004
Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases
- Longshaw, Victoria M, Chapple, J Paul, Cheetham, Michael E, Blatch, Gregory L
- Authors: Longshaw, Victoria M , Chapple, J Paul , Cheetham, Michael E , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6488 , http://hdl.handle.net/10962/d1006271 , https://dx.doi.org/10.1242/jcs.00905
- Description: The co-chaperone murine stress-inducible protein 1 (mSTI1), an Hsp70/Hsp90 organizing protein (Hop) homologue, mediates the assembly of the Hsp70/Hsp90 chaperone heterocomplex. The mSTI1 protein can be phosphorylated in vitro by cell cycle kinases proximal to a putative nuclear localization signal (NLS), which substantiated a predicted casein kinase II (CKII)-cdc2 kinase-NLS (CcN) motif at position 180-239 and suggested that mSTI1 might move between the cytoplasm and the nucleus under certain cell cycle conditions. The mechanism responsible for the cellular localization of mSTI1 was probed using NIH3T3 fibroblasts to investigate the localization of endogenous mSTI1 and enhanced green fluorescent protein (EGFP)-tagged mSTI1 mutants. Localization studies on cell lines stably expressing NLS(mSTI1)-EGFP and EGFP demonstrated that the NLS(mSTI1) was able to promote a nuclear localization of EGFP. The mSTI1 protein was exclusively cytoplasmic in most cells under normal conditions but was present in the nucleus of a subpopulation of cells and accumulated in the nucleus following inhibition of nuclear export (leptomycin B treatment). G1/S-phase arrest (using hydroxyurea) and inhibition of cdc2 kinase (using olomoucine) but not inhibition of casein kinase II (using 5,6-dichlorobenzimidazole riboside), increased the proportion of cells with endogenous mSTI1 nuclear staining. mSTI1-EGFP behaved identically to endogenous mSTI1. The functional importance of key residues was tested using modified mSTI1-EGFP proteins. Inactivation and phosphorylation mimicking of potential phosphorylation sites in mSTI1 altered the nuclear translocation. Mimicking of phosphorylation at the mSTI1 CKII phosphorylation site (S189E) promoted nuclear localization of mSTI1-EGFP. Mimicking phosphorylation at the cdc2 kinase phosphorylation site (T198E) promoted cytoplasmic localization of mSTI1-EGFP at the G1/S-phase transition,whereas removal of this site (T198A) promoted the nuclear localization of mSTI1-EGFP under the same conditions. These data provide the first evidence of nuclear import and export of a major Hsp70/Hsp90 co-chaperone and the regulation of this nuclear-cytoplasmic shuttling by cell cycle status and cell cycle kinases.
- Full Text:
- Date Issued: 2004
Nuclear translocation of the Hsp70/Hsp90 organizing protein mSTI1 is regulated by cell cycle kinases
- Authors: Longshaw, Victoria M , Chapple, J Paul , Cheetham, Michael E , Blatch, Gregory L
- Date: 2004
- Language: English
- Type: Article
- Identifier: vital:6488 , http://hdl.handle.net/10962/d1006271 , https://dx.doi.org/10.1242/jcs.00905
- Description: The co-chaperone murine stress-inducible protein 1 (mSTI1), an Hsp70/Hsp90 organizing protein (Hop) homologue, mediates the assembly of the Hsp70/Hsp90 chaperone heterocomplex. The mSTI1 protein can be phosphorylated in vitro by cell cycle kinases proximal to a putative nuclear localization signal (NLS), which substantiated a predicted casein kinase II (CKII)-cdc2 kinase-NLS (CcN) motif at position 180-239 and suggested that mSTI1 might move between the cytoplasm and the nucleus under certain cell cycle conditions. The mechanism responsible for the cellular localization of mSTI1 was probed using NIH3T3 fibroblasts to investigate the localization of endogenous mSTI1 and enhanced green fluorescent protein (EGFP)-tagged mSTI1 mutants. Localization studies on cell lines stably expressing NLS(mSTI1)-EGFP and EGFP demonstrated that the NLS(mSTI1) was able to promote a nuclear localization of EGFP. The mSTI1 protein was exclusively cytoplasmic in most cells under normal conditions but was present in the nucleus of a subpopulation of cells and accumulated in the nucleus following inhibition of nuclear export (leptomycin B treatment). G1/S-phase arrest (using hydroxyurea) and inhibition of cdc2 kinase (using olomoucine) but not inhibition of casein kinase II (using 5,6-dichlorobenzimidazole riboside), increased the proportion of cells with endogenous mSTI1 nuclear staining. mSTI1-EGFP behaved identically to endogenous mSTI1. The functional importance of key residues was tested using modified mSTI1-EGFP proteins. Inactivation and phosphorylation mimicking of potential phosphorylation sites in mSTI1 altered the nuclear translocation. Mimicking of phosphorylation at the mSTI1 CKII phosphorylation site (S189E) promoted nuclear localization of mSTI1-EGFP. Mimicking phosphorylation at the cdc2 kinase phosphorylation site (T198E) promoted cytoplasmic localization of mSTI1-EGFP at the G1/S-phase transition,whereas removal of this site (T198A) promoted the nuclear localization of mSTI1-EGFP under the same conditions. These data provide the first evidence of nuclear import and export of a major Hsp70/Hsp90 co-chaperone and the regulation of this nuclear-cytoplasmic shuttling by cell cycle status and cell cycle kinases.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »