Mechanisms of habitat segregation between an invasive (Mytilus galloprovincialis) and an indigenous (Perna perna) mussel: adult growth and mortality
- Bownes, Sarah J, McQuaid, Christopher D
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2010
- Language: English
- Type: Article
- Identifier: vital:6868 , http://hdl.handle.net/10962/d1011500
- Description: The invasive mussel Mytilus galloprovincialis and the indigenous mussel Perna perna coexist intertidally on the south coast of South Africa through partial vertical habitat segregation: M. galloprovincialis dominates the upper shore and P. perna the lower shore. Recruitment patterns can explain the zonation of P. perna, but not the invasive species. We examined the role of post-recruitment interactions by measuring spatial and temporal differences in adult growth and mortality rates of the two species. Specifically, we tested the hypothesis that interspecific differences in growth and mortality reflect adult distribution patterns. The two study locations, Plettenberg Bay and Tsitsikamma, are 70 km apart with two sites (separated by 300–400 m) per location, each divided into three vertical zones. Growth was measured seasonally using different marking methods in 2001 and 2003. Cumulative adult mortality was measured through summer in 2003/2004. Both species generally grew more slowly upshore, but they showed different effects of season. For P. perna, growth was significantly reduced in winter in the low zone, but unaffected by season in the high zone. For M. galloprovincialis, growth was either unaffected by season or increased in winter, even in the high zone. Thus, growth of P. perna and M. galloprovincialis was reduced under cool winter and warm summer temperatures, respectively; and while growth was more similar between species in summer, M. galloprovincialis grew much faster than P. perna in winter. Mortality of P. perna increased upshore. For M. galloprovincialis, mortality was not zone-dependent and was significantly greater than for P. perna on the low-shore and (generally) across the shore in Tsitsikamma. Both species had higher growth and mortality rates in Plettenberg Bay than in Tsitsikamma. Thus, P. perna seems able to maintain spatial dominance on the low-shore and at certain sites because of higher mortality of M. galloprovincialis. We conclude that seasonality in growth of the two species reflects their biogeographic affinities and that coexistence is possible through pre-recruitment effects that limit the vertical distribution of P. perna and post-recruitment effects that limit M. galloprovincialis.
- Full Text:
- Date Issued: 2010
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2010
- Language: English
- Type: Article
- Identifier: vital:6868 , http://hdl.handle.net/10962/d1011500
- Description: The invasive mussel Mytilus galloprovincialis and the indigenous mussel Perna perna coexist intertidally on the south coast of South Africa through partial vertical habitat segregation: M. galloprovincialis dominates the upper shore and P. perna the lower shore. Recruitment patterns can explain the zonation of P. perna, but not the invasive species. We examined the role of post-recruitment interactions by measuring spatial and temporal differences in adult growth and mortality rates of the two species. Specifically, we tested the hypothesis that interspecific differences in growth and mortality reflect adult distribution patterns. The two study locations, Plettenberg Bay and Tsitsikamma, are 70 km apart with two sites (separated by 300–400 m) per location, each divided into three vertical zones. Growth was measured seasonally using different marking methods in 2001 and 2003. Cumulative adult mortality was measured through summer in 2003/2004. Both species generally grew more slowly upshore, but they showed different effects of season. For P. perna, growth was significantly reduced in winter in the low zone, but unaffected by season in the high zone. For M. galloprovincialis, growth was either unaffected by season or increased in winter, even in the high zone. Thus, growth of P. perna and M. galloprovincialis was reduced under cool winter and warm summer temperatures, respectively; and while growth was more similar between species in summer, M. galloprovincialis grew much faster than P. perna in winter. Mortality of P. perna increased upshore. For M. galloprovincialis, mortality was not zone-dependent and was significantly greater than for P. perna on the low-shore and (generally) across the shore in Tsitsikamma. Both species had higher growth and mortality rates in Plettenberg Bay than in Tsitsikamma. Thus, P. perna seems able to maintain spatial dominance on the low-shore and at certain sites because of higher mortality of M. galloprovincialis. We conclude that seasonality in growth of the two species reflects their biogeographic affinities and that coexistence is possible through pre-recruitment effects that limit the vertical distribution of P. perna and post-recruitment effects that limit M. galloprovincialis.
- Full Text:
- Date Issued: 2010
Will the invasive mussel Mytilus galloprovincialis Lamarck replace the indigenous Perna perna L. on the south coast of South Africa?
- Bownes, Sarah J, McQuaid, Christopher D
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6926 , http://hdl.handle.net/10962/d1011914
- Description: The mussel Mytilus galloprovincialis is invasive worldwide, has displaced indigenous species on the west coast of South Africa and now threatens Perna perna on the south coast. We tested the hypothesis that Mytilus will replace Perna by examining changes in their distribution on shores where they co-exist. Total cover, adult density, recruit density, recruit/adult correlations and mean maximum lengths of both species were measured in 2001 at two contrasting sites (Plettenberg Bay and Tsitsikamma) 70 km apart, each including two locations 100 m apart. Cover and density were measured again in 2004. Total mussel abundance was significantly lower in Tsitsikamma, and recruit density was only 17% that of Plettenberg Bay. Abundance and cover increased upshore for Mytilus, but decreased for Perna, giving Mytilus higher adult and recruit density and total cover than Perna in the upper zones. Low shore densities of recruits and adults were similar between species but cover was lower for Mytilus, reflecting its smaller size, and presumably slower growth or higher mortality there. Thus, mechanisms excluding species differed among zones. Recruitment limitation delays invasion at Tsitsikamma and excludes Perna from the high shore, while Mytilus is excluded from the low shore by post-recruitment effects. Recruitment limitation also shapes population structure. Recruit/adult correlations were significant only where adult densities were low, and this effect was species-specific. Thus, at low densities, larvae settle or survive better near adult conspecifics. After 3 years, these patterns remained strongly evident, suggesting Mytilus will not eliminate Perna and that co-existence is possible through partial habitat segregation driven by recruitment limitation of Perna on the high shore and post-settlement effects on Mytilus on the low shore.
- Full Text:
- Date Issued: 2006
- Authors: Bownes, Sarah J , McQuaid, Christopher D
- Date: 2006
- Language: English
- Type: Article
- Identifier: vital:6926 , http://hdl.handle.net/10962/d1011914
- Description: The mussel Mytilus galloprovincialis is invasive worldwide, has displaced indigenous species on the west coast of South Africa and now threatens Perna perna on the south coast. We tested the hypothesis that Mytilus will replace Perna by examining changes in their distribution on shores where they co-exist. Total cover, adult density, recruit density, recruit/adult correlations and mean maximum lengths of both species were measured in 2001 at two contrasting sites (Plettenberg Bay and Tsitsikamma) 70 km apart, each including two locations 100 m apart. Cover and density were measured again in 2004. Total mussel abundance was significantly lower in Tsitsikamma, and recruit density was only 17% that of Plettenberg Bay. Abundance and cover increased upshore for Mytilus, but decreased for Perna, giving Mytilus higher adult and recruit density and total cover than Perna in the upper zones. Low shore densities of recruits and adults were similar between species but cover was lower for Mytilus, reflecting its smaller size, and presumably slower growth or higher mortality there. Thus, mechanisms excluding species differed among zones. Recruitment limitation delays invasion at Tsitsikamma and excludes Perna from the high shore, while Mytilus is excluded from the low shore by post-recruitment effects. Recruitment limitation also shapes population structure. Recruit/adult correlations were significant only where adult densities were low, and this effect was species-specific. Thus, at low densities, larvae settle or survive better near adult conspecifics. After 3 years, these patterns remained strongly evident, suggesting Mytilus will not eliminate Perna and that co-existence is possible through partial habitat segregation driven by recruitment limitation of Perna on the high shore and post-settlement effects on Mytilus on the low shore.
- Full Text:
- Date Issued: 2006
- «
- ‹
- 1
- ›
- »