A study of the kinetics of a high temperature thermoluminescence peak in annealed natural quartz
- Thomas, Sunil, Chithambo, Makaiko L
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110007 , vital:33213 , DOI: 10.1016/j.jlumin.2018.08.077
- Description: Thermoluminescence of a high temperature secondary glow-peak in natural quartz annealed at 900 °C is reported. The glow-curve of a sample irradiated to 10 Gy and measured at 1 °C/s shows three peaks; the main peak at 71 °C and two other weaker-intensity peaks at 125 °C and 177 °C. For reference, the peaks are labelled as I, II and III. This study is concerned with the secondary peak at 177 °C (peak III). The electron trap responsible for peak III is stable at ambient temperature as determined by monitoring the peak intensity after various delays between irradiation and measurement. The activation energy and frequency factor of the peak were estimated as ~1.24 eV and ~10¹² s⁻¹ respectively. The dose response of the peak in the range 1–300 Gy is sublinear. The influence of either partial heating or irradiation dose on the peak position suggest that the peak follows non-first-order kinetics.
- Full Text: false
- Date Issued: 2018
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110007 , vital:33213 , DOI: 10.1016/j.jlumin.2018.08.077
- Description: Thermoluminescence of a high temperature secondary glow-peak in natural quartz annealed at 900 °C is reported. The glow-curve of a sample irradiated to 10 Gy and measured at 1 °C/s shows three peaks; the main peak at 71 °C and two other weaker-intensity peaks at 125 °C and 177 °C. For reference, the peaks are labelled as I, II and III. This study is concerned with the secondary peak at 177 °C (peak III). The electron trap responsible for peak III is stable at ambient temperature as determined by monitoring the peak intensity after various delays between irradiation and measurement. The activation energy and frequency factor of the peak were estimated as ~1.24 eV and ~10¹² s⁻¹ respectively. The dose response of the peak in the range 1–300 Gy is sublinear. The influence of either partial heating or irradiation dose on the peak position suggest that the peak follows non-first-order kinetics.
- Full Text: false
- Date Issued: 2018
Characteristics of the thermoluminescence of Sm3+-doped P2O5-K2O-MgO-Al2O3-ZnF2 glass
- Thomas, Sunil, Chithambo, Makaiko L
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/109979 , vital:33211 , https://doi.org/10.1016/j.radmeas.2018.06.005
- Description: We report the thermoluminescence of Sm3+-doped P2O5-K2O-MgO-Al2O3-ZnF2 glass. A glow-curve measured at 1 °C/s after beta irradiation to 10 Gy shows two peaks; a broad high intensity one at 214.0 ± 0.4 °C and a weaker intensity peak at 75.2 ± 0.8 °C. The dependence of peak position on partial heating as well as on irradiation suggest that the main peak at 214 °C is a combination of several overlapping peaks. The activation energy of the different components of the main peak, calculated using the initial-rise method, differ showing that the components are distinct. The reproducibility, fading and dose response were examined by considering the dominant component of the main peak. The intensity of the peak changes with heating rate in a manner consistent with thermal quenching.
- Full Text: false
- Date Issued: 2018
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/109979 , vital:33211 , https://doi.org/10.1016/j.radmeas.2018.06.005
- Description: We report the thermoluminescence of Sm3+-doped P2O5-K2O-MgO-Al2O3-ZnF2 glass. A glow-curve measured at 1 °C/s after beta irradiation to 10 Gy shows two peaks; a broad high intensity one at 214.0 ± 0.4 °C and a weaker intensity peak at 75.2 ± 0.8 °C. The dependence of peak position on partial heating as well as on irradiation suggest that the main peak at 214 °C is a combination of several overlapping peaks. The activation energy of the different components of the main peak, calculated using the initial-rise method, differ showing that the components are distinct. The reproducibility, fading and dose response were examined by considering the dominant component of the main peak. The intensity of the peak changes with heating rate in a manner consistent with thermal quenching.
- Full Text: false
- Date Issued: 2018
General features and kinetic analysis of thermoluminescence from annealed natural quartz
- Thomas, Sunil, Chithambo, Makaiko L
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/112885 , vital:33670 , https://doi.org/10.1016/j.jlumin.2018.02.003
- Description: The aim of this study is to explore the thermoluminescence properties of beta irradiated natural quartz annealed at 900 °C, that is, beyond its second phase inversion temperature of 867 °C. The sample was annealed to improve its sensitivity and to deplete any residual charge from electron traps. The glow-curve corresponding to 10 Gy shows three peaks when measured at 1 °C/s; a dominant one at 71 °C, the subject of this report, and two other ones at 125 and 177 °C. The dose response of the main peak was studied in the range 1–300 Gy. The activation energy of the main glow-peak was evaluated as ~1 eV. Kinetic analyses using various methods show that the main glow-peak follows first order kinetics.
- Full Text: false
- Date Issued: 2018
- Authors: Thomas, Sunil , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/112885 , vital:33670 , https://doi.org/10.1016/j.jlumin.2018.02.003
- Description: The aim of this study is to explore the thermoluminescence properties of beta irradiated natural quartz annealed at 900 °C, that is, beyond its second phase inversion temperature of 867 °C. The sample was annealed to improve its sensitivity and to deplete any residual charge from electron traps. The glow-curve corresponding to 10 Gy shows three peaks when measured at 1 °C/s; a dominant one at 71 °C, the subject of this report, and two other ones at 125 and 177 °C. The dose response of the main peak was studied in the range 1–300 Gy. The activation energy of the main glow-peak was evaluated as ~1 eV. Kinetic analyses using various methods show that the main glow-peak follows first order kinetics.
- Full Text: false
- Date Issued: 2018
Influence of annealing on thermoluminescence of natural quartz: kinetic analysis and experimental study of apparent inverse thermal quenching
- Folley, Damilola E, Chithambo, Makaiko L
- Authors: Folley, Damilola E , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/109996 , vital:33212 , https://doi.org/10.1016/j.radmeas.2018.04.010
- Description: The influence of annealing on the main thermoluminescence glow-peak of natural quartz is reported. For comparison, results from un-annealed quartz are included. The glow-curve measured at 1 °Cs−1 after beta irradiation to 50 Gy revealed six peaks each for quartz annealed at 800 °C for 1 h and the un-annealed sample. The main peak in both quartzes was observed at 72 °C. This report focusses on kinetic analysis of the main peak. The analysis was carried out using various methods consisting of the initial rise, whole glow-peak, peak shape, variable heating rate and phosphorescence-based methods. The activation energy obtained using the various methods ranges between and for the annealed sample and between and for the un-annealed sample. The result suggests that annealing has little effect on the activation energy. The luminescence intensity decreased with heating rate in the un-annealed sample in a manner suggestive of thermal quenching. In contrast, the dependence of intensity on heating rate in the annealed sample is influenced by the dose the sample is irradiated to. Whereas thermal quenching was noted for a dose of 50 Gy in the un-annealed sample, the annealed sample showed evidence of thermal quenching at a low dose of 3 Gy with the opposite effect when irradiated to 50 Gy. The activation energies of thermal quenching were found as and for the un-annealed and annealed samples respectively. We ascribe the apparent dependence of thermal quenching on dose in the annealed sample to competition between radiative and non-radiative transitions at the recombination centre.
- Full Text: false
- Date Issued: 2018
- Authors: Folley, Damilola E , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/109996 , vital:33212 , https://doi.org/10.1016/j.radmeas.2018.04.010
- Description: The influence of annealing on the main thermoluminescence glow-peak of natural quartz is reported. For comparison, results from un-annealed quartz are included. The glow-curve measured at 1 °Cs−1 after beta irradiation to 50 Gy revealed six peaks each for quartz annealed at 800 °C for 1 h and the un-annealed sample. The main peak in both quartzes was observed at 72 °C. This report focusses on kinetic analysis of the main peak. The analysis was carried out using various methods consisting of the initial rise, whole glow-peak, peak shape, variable heating rate and phosphorescence-based methods. The activation energy obtained using the various methods ranges between and for the annealed sample and between and for the un-annealed sample. The result suggests that annealing has little effect on the activation energy. The luminescence intensity decreased with heating rate in the un-annealed sample in a manner suggestive of thermal quenching. In contrast, the dependence of intensity on heating rate in the annealed sample is influenced by the dose the sample is irradiated to. Whereas thermal quenching was noted for a dose of 50 Gy in the un-annealed sample, the annealed sample showed evidence of thermal quenching at a low dose of 3 Gy with the opposite effect when irradiated to 50 Gy. The activation energies of thermal quenching were found as and for the un-annealed and annealed samples respectively. We ascribe the apparent dependence of thermal quenching on dose in the annealed sample to competition between radiative and non-radiative transitions at the recombination centre.
- Full Text: false
- Date Issued: 2018
Optically stimulated luminescence of ultra-high molecular weight polyethylene: a study of dosimetric features
- Chithambo, Makaiko L, Kalita, Jitumani M
- Authors: Chithambo, Makaiko L , Kalita, Jitumani M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110035 , vital:33217 , https://doi.org/10.1016/j.radmeas.2018.06.006
- Description: We report the dosimetric features of ultra-high molecular weight polyethylene (UHMWPE) using luminescence optically stimulated using 470 nm blue light. Samples irradiated to between 1 and 1000 Gy produces luminescence that increases with irradiation dose to produce a linear dose response between 1 and 1000 Gy. The sample was determined not to be affected by pre-dose in tests using a pre-dose of 4000 Gy. This characteristic precludes the need for elaborate background erasing routines typical of dosimetry experiments. The signal has good reproducibility. We used this property to test recovery of ‘unknown’ doses with encouraging results. It was observed that luminescence can also be stimulated using 870 nm infrared light. The dose response, fading, pre-dose effect and the ability to optically stimulate luminescence from the polymer is discussed in terms of curing involving free-radicals.
- Full Text: false
- Date Issued: 2018
- Authors: Chithambo, Makaiko L , Kalita, Jitumani M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110035 , vital:33217 , https://doi.org/10.1016/j.radmeas.2018.06.006
- Description: We report the dosimetric features of ultra-high molecular weight polyethylene (UHMWPE) using luminescence optically stimulated using 470 nm blue light. Samples irradiated to between 1 and 1000 Gy produces luminescence that increases with irradiation dose to produce a linear dose response between 1 and 1000 Gy. The sample was determined not to be affected by pre-dose in tests using a pre-dose of 4000 Gy. This characteristic precludes the need for elaborate background erasing routines typical of dosimetry experiments. The signal has good reproducibility. We used this property to test recovery of ‘unknown’ doses with encouraging results. It was observed that luminescence can also be stimulated using 870 nm infrared light. The dose response, fading, pre-dose effect and the ability to optically stimulate luminescence from the polymer is discussed in terms of curing involving free-radicals.
- Full Text: false
- Date Issued: 2018
Photoluminescence and thermoluminescence properties of BaGa2O4
- Noto, L L, Poelman, D, Orante-Barrón, V R, Swart, H C, Mathevula, Langutani E, Nyenge, R, Chithambo, Makaiko L, Mothudi, B M, Dhlamini, M S
- Authors: Noto, L L , Poelman, D , Orante-Barrón, V R , Swart, H C , Mathevula, Langutani E , Nyenge, R , Chithambo, Makaiko L , Mothudi, B M , Dhlamini, M S
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/116037 , vital:34292 , https://doi.org/10.1016/j.physb.2017.07.059
- Description: Rare–Earth free luminescent materials are fast becoming important as the cost of rare earth ions gradually increases. In this work, a Rare–Earth free BaGa2O4 luminescent compound was prepared by solid state chemical reaction, which was confirmed to have a single phase by X-ray Diffraction. The Backscattered Electron image and Energy Dispersive X-ray spectroscopy maps confirmed irregular particle and homogeneous compound formation, respectively. The Photoluminescence spectrum displayed broad emission between 350 to 650 nm, which was deconvoluted into two components. The photoluminescence excitation peak was positioned at 254 nm, which corresponds with the band-to-band position observed from the diffuse reflectance spectrum. The band gap was extrapolated to 4.65 ± 0.02 eV using the Kubelka-Munk model. The preliminary thermoluminescence results indicated that the kinetics involved were neither of first nor second order. Additionally, the activation energy of the electrons within the trap centres was approximated to 0.61 ± 0.01 eV using the Initial Rise model.
- Full Text: false
- Date Issued: 2018
- Authors: Noto, L L , Poelman, D , Orante-Barrón, V R , Swart, H C , Mathevula, Langutani E , Nyenge, R , Chithambo, Makaiko L , Mothudi, B M , Dhlamini, M S
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/116037 , vital:34292 , https://doi.org/10.1016/j.physb.2017.07.059
- Description: Rare–Earth free luminescent materials are fast becoming important as the cost of rare earth ions gradually increases. In this work, a Rare–Earth free BaGa2O4 luminescent compound was prepared by solid state chemical reaction, which was confirmed to have a single phase by X-ray Diffraction. The Backscattered Electron image and Energy Dispersive X-ray spectroscopy maps confirmed irregular particle and homogeneous compound formation, respectively. The Photoluminescence spectrum displayed broad emission between 350 to 650 nm, which was deconvoluted into two components. The photoluminescence excitation peak was positioned at 254 nm, which corresponds with the band-to-band position observed from the diffuse reflectance spectrum. The band gap was extrapolated to 4.65 ± 0.02 eV using the Kubelka-Munk model. The preliminary thermoluminescence results indicated that the kinetics involved were neither of first nor second order. Additionally, the activation energy of the electrons within the trap centres was approximated to 0.61 ± 0.01 eV using the Initial Rise model.
- Full Text: false
- Date Issued: 2018
Phototransferred thermoluminescence and thermally-assisted optically stimulated luminescence dosimetry using α-Al2O3:C,Mg annealed at 1200°C
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105422 , vital:32511 , https://doi.org/10.1016/j.jlumin.2018.08.085
- Description: We report phototransferred thermoluminescence (PTTL) and thermally-assisted optically stimulated luminescence (TA-OSL) of α-Al2O3:C,Mg annealed at 1200 °C. PTTL is TL measured from an irradiated phosphor after its exposure to light. The other theme of this study, TA-OSL is the additional amount of luminescence optically stimulated from a sample over and above the amount that would be measured at room temperature. A sample irradiated to 10 Gy and preheated to 230 °C at 1 °C/s followed by illumination by 470 nm blue light produced four PTTL peaks at 53, 80, 102 and 173 °C. The PTTL peaks occur at the same positions as the corresponding conventional TL peaks. Their kinetic parameters are also similar. The intensity of the PTTL peaks increased with duration of illumination to a maximum within 200 s for doses between 1 Gy and 10 Gy. The dose response of each of the PTTL peaks at 80, 102 and 173 °C is linear within 1–15 Gy. The rate of fading is low and the peaks are reproducible. When the irradiated sample is optically stimulated at temperatures between 30 °C and 300 °C, after preheating to 500 °C, the intensity of its TA-OSL goes through a peak with temperature at 200 °C. Using the rising edge of the plot, activation energy of thermal assistance for a deep electron trap was estimated as (0.21 ± 0.02) eV. The TA-OSL dose response is sublinear from 10–250 Gy and saturates thereafter. The PTTL and TA-OSL analyses signify that the concentration of deep traps in α-Al2O3:C,Mg increased after annealing at 1200 °C. As a result, the sample produced better PTTL and TA-OSL response than when annealed at lower temperature.
- Full Text: false
- Date Issued: 2018
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/105422 , vital:32511 , https://doi.org/10.1016/j.jlumin.2018.08.085
- Description: We report phototransferred thermoluminescence (PTTL) and thermally-assisted optically stimulated luminescence (TA-OSL) of α-Al2O3:C,Mg annealed at 1200 °C. PTTL is TL measured from an irradiated phosphor after its exposure to light. The other theme of this study, TA-OSL is the additional amount of luminescence optically stimulated from a sample over and above the amount that would be measured at room temperature. A sample irradiated to 10 Gy and preheated to 230 °C at 1 °C/s followed by illumination by 470 nm blue light produced four PTTL peaks at 53, 80, 102 and 173 °C. The PTTL peaks occur at the same positions as the corresponding conventional TL peaks. Their kinetic parameters are also similar. The intensity of the PTTL peaks increased with duration of illumination to a maximum within 200 s for doses between 1 Gy and 10 Gy. The dose response of each of the PTTL peaks at 80, 102 and 173 °C is linear within 1–15 Gy. The rate of fading is low and the peaks are reproducible. When the irradiated sample is optically stimulated at temperatures between 30 °C and 300 °C, after preheating to 500 °C, the intensity of its TA-OSL goes through a peak with temperature at 200 °C. Using the rising edge of the plot, activation energy of thermal assistance for a deep electron trap was estimated as (0.21 ± 0.02) eV. The TA-OSL dose response is sublinear from 10–250 Gy and saturates thereafter. The PTTL and TA-OSL analyses signify that the concentration of deep traps in α-Al2O3:C,Mg increased after annealing at 1200 °C. As a result, the sample produced better PTTL and TA-OSL response than when annealed at lower temperature.
- Full Text: false
- Date Issued: 2018
Phototransferred thermoluminescence of synthetic quartz: analysis of illumination-time response curves
- Chithambo, Makaiko L, Niyonzima, P, Kalita, Jitumani M
- Authors: Chithambo, Makaiko L , Niyonzima, P , Kalita, Jitumani M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111020 , vital:33364 , https://doi.org/10.1016/j.jlumin.2018.02.029
- Description: Phototransferred thermoluminescence (PTTL) induced in synthetic quartz by 470 nm blue light is reported. The glow curve measured at 5 °C/s up to 500 °C after irradiation to 100 Gy shows six peaks at 94, 116, 175, 212, 280 and 348 °C labelled I through VI and another one at 80 °C (labelled A1). PTTL is only observed for peaks A1 and I and is induced at peak A1 as long as peak III has been removed by preheating and at peak I after preheating to deplete peak VI. The inducement of PTTL even when all peaks have been removed points to deep electron traps in the quartz also acting as donors in addition to the putative ones below 500 °C. The PTTL intensity as a function of duration of illumination for A1 goes through a peak and decreases monotonically or to a stable value depending on the preheating temperature. The change of PTTL intensity as a function of illumination time is described using a set of coupled linear differential equations. The number of acceptors and donors in a particular system described in this way is influenced by the preheating temperature.
- Full Text: false
- Date Issued: 2018
- Authors: Chithambo, Makaiko L , Niyonzima, P , Kalita, Jitumani M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111020 , vital:33364 , https://doi.org/10.1016/j.jlumin.2018.02.029
- Description: Phototransferred thermoluminescence (PTTL) induced in synthetic quartz by 470 nm blue light is reported. The glow curve measured at 5 °C/s up to 500 °C after irradiation to 100 Gy shows six peaks at 94, 116, 175, 212, 280 and 348 °C labelled I through VI and another one at 80 °C (labelled A1). PTTL is only observed for peaks A1 and I and is induced at peak A1 as long as peak III has been removed by preheating and at peak I after preheating to deplete peak VI. The inducement of PTTL even when all peaks have been removed points to deep electron traps in the quartz also acting as donors in addition to the putative ones below 500 °C. The PTTL intensity as a function of duration of illumination for A1 goes through a peak and decreases monotonically or to a stable value depending on the preheating temperature. The change of PTTL intensity as a function of illumination time is described using a set of coupled linear differential equations. The number of acceptors and donors in a particular system described in this way is influenced by the preheating temperature.
- Full Text: false
- Date Issued: 2018
Spectral study of radioluminescence in carbon-doped aluminium oxide
- Nyirenda, Angel N, Chithambo, Makaiko L
- Authors: Nyirenda, Angel N , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110067 , vital:33220 , https://doi.org/10.1016/j.radmeas.2018.06.026
- Description: The spectral emission study of the radioluminescence (RL) measured from carbon-doped aluminium oxide (α-Al2O3:C) at various temperatures between 30 and 300∘C is reported. The energy-resolved RL emission spectra measured at room temperature show seven gaussian emission bands centred at 1.75, 1.79, 1.85, 2.22, 2.96, 3.72 and 4.44 eV. The 2.96-eV emission, associated with F-centres, is the primary RL emission whereas the narrow (R-line) emission centred at 1.79 eV, associated with Cr3+ impurity ions, is the most intense secondary emission. However, the intensity of 1.79-eV emission decreases with repeated RL measurements. The central emission energy for F-centres is constant throughout the temperature range of investigation. The full width at half maximum (FWHM) for the F-centre emission band increases with temperature whereas the F-centre peak intensity exhibits thermal quenching behaviour at temperatures above 160∘C. On the other hand, the emission energy for the R-line emission of Cr3+ is constant for temperatures between 30 and 160∘C, whereas its peak intensity generally decreases with temperature. F-centres experience strong-coupling in their crystallographic sites with estimated electron-lattice coupling parameters of S = 5.0 ± 0.9, Ep = 0.079 ± 0.008 eV and ν = 1.91 × 1013 Hz where S, Ep and ν are the Huang-Rhys factor, the phonon energy and the phonon frequency, respectively. The RL spectra recorded while ramping the temperature of a sample at a constant rate have been compared against conventional TL spectra.
- Full Text: false
- Date Issued: 2018
- Authors: Nyirenda, Angel N , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110067 , vital:33220 , https://doi.org/10.1016/j.radmeas.2018.06.026
- Description: The spectral emission study of the radioluminescence (RL) measured from carbon-doped aluminium oxide (α-Al2O3:C) at various temperatures between 30 and 300∘C is reported. The energy-resolved RL emission spectra measured at room temperature show seven gaussian emission bands centred at 1.75, 1.79, 1.85, 2.22, 2.96, 3.72 and 4.44 eV. The 2.96-eV emission, associated with F-centres, is the primary RL emission whereas the narrow (R-line) emission centred at 1.79 eV, associated with Cr3+ impurity ions, is the most intense secondary emission. However, the intensity of 1.79-eV emission decreases with repeated RL measurements. The central emission energy for F-centres is constant throughout the temperature range of investigation. The full width at half maximum (FWHM) for the F-centre emission band increases with temperature whereas the F-centre peak intensity exhibits thermal quenching behaviour at temperatures above 160∘C. On the other hand, the emission energy for the R-line emission of Cr3+ is constant for temperatures between 30 and 160∘C, whereas its peak intensity generally decreases with temperature. F-centres experience strong-coupling in their crystallographic sites with estimated electron-lattice coupling parameters of S = 5.0 ± 0.9, Ep = 0.079 ± 0.008 eV and ν = 1.91 × 1013 Hz where S, Ep and ν are the Huang-Rhys factor, the phonon energy and the phonon frequency, respectively. The RL spectra recorded while ramping the temperature of a sample at a constant rate have been compared against conventional TL spectra.
- Full Text: false
- Date Issued: 2018
The effect of annealing and beta irradiation on thermoluminescence spectra of α-Al2O3: C, Mg
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/112875 , vital:33669 , https://doi.org/10.1016/j.jlumin.2017.12.036
- Description: The effect of annealing on thermoluminescence spectra of beta irradiated α-Al2O3:C,Mg has been studied. Measurements were made on an un-annealed sample and samples annealed at 600, 700 and 900 °C. A glow curve measured at 1 °C/s from samples irradiated to 1 Gy shows a high intensity peak at 163 °C and six secondary peaks of weaker intensity at 43, 73, 195, 280, 329 and 370 °C. When the samples are annealed at 700 or 900 °C, an additional secondary peak appears at 100 °C. The thermoluminescence spectrum of an un-annealed sample measured at 1 °C/s between 300 and 700 nm shows the main emission band at ~ 410 nm and subsidiary emission bands at ~ 325 and 485 nm. The emission from samples annealed at 700 and 900 °C show similar bands except for a decrease in intensity of the emission at 485 nm. The emission bands at 325, 410 and 485 nm are attributed to F+, F and F22+(2Mg) -centres respectively. The decrease of the emission band at 485 nm is deduced to be due to the destruction of the F22+(2Mg) centre at 700 °C. The emission bands are unaffected by irradiation dose between 10 and 320 Gy. However, when the sample is annealed at or beyond 700 °C, any effects on the F+ and F centres emission can be easier distinguished particularly for doses greater than 10 Gy.
- Full Text: false
- Date Issued: 2018
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/112875 , vital:33669 , https://doi.org/10.1016/j.jlumin.2017.12.036
- Description: The effect of annealing on thermoluminescence spectra of beta irradiated α-Al2O3:C,Mg has been studied. Measurements were made on an un-annealed sample and samples annealed at 600, 700 and 900 °C. A glow curve measured at 1 °C/s from samples irradiated to 1 Gy shows a high intensity peak at 163 °C and six secondary peaks of weaker intensity at 43, 73, 195, 280, 329 and 370 °C. When the samples are annealed at 700 or 900 °C, an additional secondary peak appears at 100 °C. The thermoluminescence spectrum of an un-annealed sample measured at 1 °C/s between 300 and 700 nm shows the main emission band at ~ 410 nm and subsidiary emission bands at ~ 325 and 485 nm. The emission from samples annealed at 700 and 900 °C show similar bands except for a decrease in intensity of the emission at 485 nm. The emission bands at 325, 410 and 485 nm are attributed to F+, F and F22+(2Mg) -centres respectively. The decrease of the emission band at 485 nm is deduced to be due to the destruction of the F22+(2Mg) centre at 700 °C. The emission bands are unaffected by irradiation dose between 10 and 320 Gy. However, when the sample is annealed at or beyond 700 °C, any effects on the F+ and F centres emission can be easier distinguished particularly for doses greater than 10 Gy.
- Full Text: false
- Date Issued: 2018
The effect of pre-dose on thermally and optically stimulated luminescence from α-Al2O3C, Mg and α-Al2O3: C
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111011 , vital:33363 , https://doi.org/10.1016/j.apradiso.2018.06.012
- Description: We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al2O3:C,Mg and α-Al2O3:C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al2O3:C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al2O3:C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al2O3:C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al2O3:C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al2O3:C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material.
- Full Text: false
- Date Issued: 2018
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111011 , vital:33363 , https://doi.org/10.1016/j.apradiso.2018.06.012
- Description: We report the effect of pre-dose on the thermoluminescence (TL) and optically stimulated luminescence (OSL) dose response of α-Al2O3:C,Mg and α-Al2O3:C. Before any luminescence measurement, the samples were irradiated with different doses, namely 100, 500 and 1000 Gy to populate the deep electron traps. This is the pre-dose. The results from TL and OSL studies are compared with results from samples used without any pre-measurement dose. The TL glow curves and OSL decay curves of α-Al2O3:C,Mg recorded after pre-doses of 100, 500 and 1000 Gy are identical to those from a sample used without any pre-dose. Further, the TL and OSL dose response of all α-Al2O3:C,Mg samples are similar regardless of pre-dose. In comparison, the TL glow curves and OSL decay curves of α-Al2O3:C are influenced by pre-dose. We conclude that the differences in the TL and OSL dose response of various pre-dosed samples of α-Al2O3:C are due to the concentration of charge in the deep traps. On the other hand, owing to the lower concentration of such deep traps in α-Al2O3:C,Mg, the TL or OSL dose responses are not affected by pre-dose in this material.
- Full Text: false
- Date Issued: 2018
Thermoluminescence of annealed synthetic quartz: the influence of annealing on kinetic parameters and thermal quenching
- Dawam, Robert R, Chithambo, Makaiko L
- Authors: Dawam, Robert R , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110050 , vital:33218 , https://doi.org/10.1016/j.radmeas.2018.06.004
- Description: The thermoluminescence of synthetic quartz annealed at various temperatures up to 900 °C is reported. Glow curves measured at 1 oCs−1 following beta irradiation to 40 Gy from a sample annealed at 500 °C and from an unannealed one consist of a prominent peak at 70 °C and secondary peaks at 110, 180 and 310 °C. In comparison, the glow peak from the sample annealed at 900 °C consists of three peaks but with the main peak at 86 °C and other lower intensity peaks at 170 and 310 °C. Kinetic analysis was carried out on the main peak only in each case. The order of kinetics of this peak was determined to be first order using various methods. The activation energy was evaluated as an average of 0.90±0.02eV for the unannealed sample and the one annealed at 500 °C. However, when the synthetic quartz is annealed at 900 °C, the activation energy decreases to 0.65±0.02eV. The main point of interest however concerns thermal quenching. It was noted that for the sample annealed at 500 °C as well as the unannealed one, the maximum intensity of the main peak decreases with heating rate. This phenomenon is associated with thermal quenching. When the same experiment is carried out using quartz annealed at 900 °C and irradiated to the same dose, namely 40 Gy, the intensity increases with heating rate. This would imply that this sample is not affected by thermal quenching. Using the notion that the radiative and non-radiative recombination routes are competitive, we repeated the experiment using a low dose of 3 Gy. In this case, the intensity decreased with heating rate showing that the process can be tuned. The activation energy for thermal quenching for the samples annealed at 900 °C, 500 °C and unnannealed one was found as 0.65±0.02eV, 0.82±0.02eV and 0.95±0.06eV. Evidently, annealing affects recombination processes in synthetic quartz.
- Full Text: false
- Date Issued: 2018
- Authors: Dawam, Robert R , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/110050 , vital:33218 , https://doi.org/10.1016/j.radmeas.2018.06.004
- Description: The thermoluminescence of synthetic quartz annealed at various temperatures up to 900 °C is reported. Glow curves measured at 1 oCs−1 following beta irradiation to 40 Gy from a sample annealed at 500 °C and from an unannealed one consist of a prominent peak at 70 °C and secondary peaks at 110, 180 and 310 °C. In comparison, the glow peak from the sample annealed at 900 °C consists of three peaks but with the main peak at 86 °C and other lower intensity peaks at 170 and 310 °C. Kinetic analysis was carried out on the main peak only in each case. The order of kinetics of this peak was determined to be first order using various methods. The activation energy was evaluated as an average of 0.90±0.02eV for the unannealed sample and the one annealed at 500 °C. However, when the synthetic quartz is annealed at 900 °C, the activation energy decreases to 0.65±0.02eV. The main point of interest however concerns thermal quenching. It was noted that for the sample annealed at 500 °C as well as the unannealed one, the maximum intensity of the main peak decreases with heating rate. This phenomenon is associated with thermal quenching. When the same experiment is carried out using quartz annealed at 900 °C and irradiated to the same dose, namely 40 Gy, the intensity increases with heating rate. This would imply that this sample is not affected by thermal quenching. Using the notion that the radiative and non-radiative recombination routes are competitive, we repeated the experiment using a low dose of 3 Gy. In this case, the intensity decreased with heating rate showing that the process can be tuned. The activation energy for thermal quenching for the samples annealed at 900 °C, 500 °C and unnannealed one was found as 0.65±0.02eV, 0.82±0.02eV and 0.95±0.06eV. Evidently, annealing affects recombination processes in synthetic quartz.
- Full Text: false
- Date Issued: 2018
Thermoluminescence of the persistent-luminescence phosphor, BaAl2O4: a stuffed tridymite
- Pandey, A, Chithambo, Makaiko L
- Authors: Pandey, A , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/113048 , vital:33693 , hhttps://doi.org/10.1016/j.radmeas.2018.01.004
- Description: BaAl2O4 is a stuffed tridymite used as a long-lasting phosphor. The thermoluminescence of BaAl2O4 prepared by solution-combustion is reported. Analysis of the sample using X-ray diffraction shows that it formed as a single phase compound with a hexagonal structure following annealing at 1200 °C. A broad photoluminescence emission band between 300 and 650 nm was detected due to excitation at 248 nm. The phosphor showed a natural TL peak at 102 °C for measurement at 1 oCs−1 and, when beta irradiated to 100 Gy, two broad peaks at 123 and 318 °C also for heating at 1 oCs−1. The analysis of the main glow peak at 123 °C suggests that it is a combination of several collocated peaks, that is, peaks embedded within each other. We resolved four such components labelled peaks 1 to 4. The thermoluminescence decreases with heating rate in a way consistent with thermal quenching whose activation energy was determined as ∼0.65eV using peak 3. Interestingly, this value of the activation energy for thermal quenching for BaAl2O4, a stuffed derivative of silica, is similar to literature values for quartz (a silica), suggesting that the recombination centre in the two cases may be similar.
- Full Text: false
- Date Issued: 2018
- Authors: Pandey, A , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/113048 , vital:33693 , hhttps://doi.org/10.1016/j.radmeas.2018.01.004
- Description: BaAl2O4 is a stuffed tridymite used as a long-lasting phosphor. The thermoluminescence of BaAl2O4 prepared by solution-combustion is reported. Analysis of the sample using X-ray diffraction shows that it formed as a single phase compound with a hexagonal structure following annealing at 1200 °C. A broad photoluminescence emission band between 300 and 650 nm was detected due to excitation at 248 nm. The phosphor showed a natural TL peak at 102 °C for measurement at 1 oCs−1 and, when beta irradiated to 100 Gy, two broad peaks at 123 and 318 °C also for heating at 1 oCs−1. The analysis of the main glow peak at 123 °C suggests that it is a combination of several collocated peaks, that is, peaks embedded within each other. We resolved four such components labelled peaks 1 to 4. The thermoluminescence decreases with heating rate in a way consistent with thermal quenching whose activation energy was determined as ∼0.65eV using peak 3. Interestingly, this value of the activation energy for thermal quenching for BaAl2O4, a stuffed derivative of silica, is similar to literature values for quartz (a silica), suggesting that the recombination centre in the two cases may be similar.
- Full Text: false
- Date Issued: 2018
Thermoluminescence of α-Al2O3: C, Mg annealed at 1200° C
- Kalita, Jitumani M, Chithambo, Makaiko L
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111030 , vital:33365 , https://doi.org/10.1016/j.nimb.2018.03.003
- Description: Stimulated luminescence in α-Al2O3:C,Mg has thus far been studied for samples annealed at temperature no higher than 900 °C as can be seen by an examination of the literature. We report the thermoluminescence (TL) features of α-Al2O3:C,Mg annealed at 1200 °C. A glow curve measured at 1 °C/s from the samples annealed at 1200 °C shows eight peaks at 54, 80, 102, 173, 238, 290, 330 and 387 °C. Kinetic analyses show that the peak at 54 °C follows general order kinetics (b = 1.3) whereas the rest follow first order kinetics. The values of the activation energy of the peaks are between 0.77 eV and 1.90 eV and the frequency factors are of the order of 1010–1014 s−1. The intensity of the peaks at 54, 80, 102 and 173 °C increase with heating rate whereas those of the peaks at 238 and 290 °C decrease with heating rate. The decrease of intensity of the peaks at 238 and 290 °C with heating rate is due to thermal quenching whereas the increase of intensity of the peaks with heating rate indicates an inverse thermal-quenching-like behaviour. Interestingly this behaviour is observed only after annealing at 1200 °C. The activation energy for thermal quenching as calculated using the peaks at 238 and 290 °C are (1.02 ± 0.16) eV and (1.33 ± 0.15) eV respectively. Regarding the dosimetric features, the dose response of the peaks at 54, 80 and 102 °C are sublinear within 1–10 Gy and the peak at 54 °C saturates above 6 Gy. In contrast, the response of the peak at 173 °C is sublinear with 1–4 Gy and superlinear between 4 and 10 Gy. The peaks are found to fade at different rates and the rate of fading is also affected by annealing.
- Full Text: false
- Date Issued: 2018
- Authors: Kalita, Jitumani M , Chithambo, Makaiko L
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/111030 , vital:33365 , https://doi.org/10.1016/j.nimb.2018.03.003
- Description: Stimulated luminescence in α-Al2O3:C,Mg has thus far been studied for samples annealed at temperature no higher than 900 °C as can be seen by an examination of the literature. We report the thermoluminescence (TL) features of α-Al2O3:C,Mg annealed at 1200 °C. A glow curve measured at 1 °C/s from the samples annealed at 1200 °C shows eight peaks at 54, 80, 102, 173, 238, 290, 330 and 387 °C. Kinetic analyses show that the peak at 54 °C follows general order kinetics (b = 1.3) whereas the rest follow first order kinetics. The values of the activation energy of the peaks are between 0.77 eV and 1.90 eV and the frequency factors are of the order of 1010–1014 s−1. The intensity of the peaks at 54, 80, 102 and 173 °C increase with heating rate whereas those of the peaks at 238 and 290 °C decrease with heating rate. The decrease of intensity of the peaks at 238 and 290 °C with heating rate is due to thermal quenching whereas the increase of intensity of the peaks with heating rate indicates an inverse thermal-quenching-like behaviour. Interestingly this behaviour is observed only after annealing at 1200 °C. The activation energy for thermal quenching as calculated using the peaks at 238 and 290 °C are (1.02 ± 0.16) eV and (1.33 ± 0.15) eV respectively. Regarding the dosimetric features, the dose response of the peaks at 54, 80 and 102 °C are sublinear within 1–10 Gy and the peak at 54 °C saturates above 6 Gy. In contrast, the response of the peak at 173 °C is sublinear with 1–4 Gy and superlinear between 4 and 10 Gy. The peaks are found to fade at different rates and the rate of fading is also affected by annealing.
- Full Text: false
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »