Invaded habitat incompatibility affects the suitability of the potential biological control agent Listronotus sordidus for Sagittaria platyphylla in South Africa
- Martin, Grant D, Coetzee, Julie A, Lloyd, Melissa, Nombewu, Sinoxolo E, Ndlovu, Mpilonhle S, Kwong, Raelene M
- Authors: Martin, Grant D , Coetzee, Julie A , Lloyd, Melissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
- Date Issued: 2018
- Authors: Martin, Grant D , Coetzee, Julie A , Lloyd, Melissa , Nombewu, Sinoxolo E , Ndlovu, Mpilonhle S , Kwong, Raelene M
- Date: 2018
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103926 , vital:32323 , https://doi.org/10.1080/09583157.2018.1460314
- Description: Sagittaria platyphylla (Engelmann) J.G. Smith (Alismataceae) was first recorded in South Africa in 2008 and is considered to be an emerging weed with naturalised populations occurring throughout the country. A biological control programme was initiated in Australia and surveys conducted between 2010 and 2012 yielded potential agents, including the crown feeding weevil, Listronotus sordidus Gyllenhal (Coleoptera: Curculionidae). The potential of L. sordidus as a candidate biological control agent against S. platyphylla in South Africa was examined. Although adult feeding was recorded on a number of plant species, oviposition and larval development indicated a narrow host range restricted to the Alismataceae. In South Africa, S. platyphylla populations are primarily found in inundated systems. However, laboratory studies showed that L. sordidus did not oviposit on inundated plants, potentially nullifying the impact of the insect on South African populations. It is suggested that even though L. sordidus is a damaging, specific agent, its limited impact on inundated plant populations in South Africa does not justify the inherent risk associated with the release of a biological control agent.
- Full Text: false
- Date Issued: 2018
Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla – implications for biological control in Australia and South Africa
- Kwong, Raelene M, Broadhurst, Linda M, Keener, Brian R, Coetzee, Julie A, Knerr, Nunzio, Martin, Grant D
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie A , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
- Date Issued: 2017
- Authors: Kwong, Raelene M , Broadhurst, Linda M , Keener, Brian R , Coetzee, Julie A , Knerr, Nunzio , Martin, Grant D
- Date: 2017
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76991 , vital:30653 , https://doi.org/10.1016/j.biocontrol.2017.06.002
- Description: Sagittaria platyphylla (Engelm.) J.G. Sm. (Alismataceae) is an emergent aquatic plant native to southern USA. Imported into Australia and South Africa as an ornamental and aquarium plant, the species is now a serious invader of shallow freshwater wetlands, slow-flowing rivers, irrigation channels, drains and along the margins of lakes and reservoirs. As a first step towards initiating a classical biological control program, a population genetic study was conducted to determine the prospects of finding compatible biological control agents and to refine the search for natural enemies to source populations with closest genetic match to Australian and South African genotypes. Using AFLP markers we surveyed genetic diversity and population genetic structure in 26 populations from the USA, 19 from Australia and 7 from South Africa. Interestingly, we have established that populations introduced into South Africa and to a lesser extent Australia have maintained substantial molecular genetic diversity comparable with that in the native range. Results from principal coordinates analysis, population graph theory and Bayesian-based clustering analysis all support the notion that introduced populations in Australia and South Africa were founded by multiple sources from the USA. Furthermore, the divergence of some Australian populations from the USA suggests that intraspecific hybridization between genetically distinct lineages from the native range may have occurred. The implications of these findings in relation to biological control are discussed.
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »