Influence of land cover, proximity to streams and household topographical location on flooding impact in informal settlements in the Eastern Cape, South Africa
- Dalu, Mwazvita, Shackleton, Charlie M, Dalu, Tatenda
- Authors: Dalu, Mwazvita , Shackleton, Charlie M , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/182089 , vital:43799 , xlink:href="https://doi.org/10.1016/j.ijdrr.2017.12.009"
- Description: Patterns of land use, household topographical location and state of natural vegetation influence the spatial distribution of flooding impact. Using field observations and GIS mapping techniques, we investigated how landscape factors influenced structural flooding impact in informal settlements. This study was carried out in the informal settlements of the Eastern Cape Province of South Africa, after the October 2012 floods. Increasing slope significantly raised the probability and level of damage by at least 30% in five of the seven sites, whereas proximity to river and wetlands (more than 100 m) was significant in only two of the sites and at lower levels. Multi-regression analysis highlighted that land cover, proximity to streams and household topographical location influenced the impact of flooding on housing structures. We found that the impact on housing structures in informal settlements during the floods were significantly influenced by their proximity to water bodies, slope factor and patterns of land cover.
- Full Text:
- Date Issued: 2018
- Authors: Dalu, Mwazvita , Shackleton, Charlie M , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/182089 , vital:43799 , xlink:href="https://doi.org/10.1016/j.ijdrr.2017.12.009"
- Description: Patterns of land use, household topographical location and state of natural vegetation influence the spatial distribution of flooding impact. Using field observations and GIS mapping techniques, we investigated how landscape factors influenced structural flooding impact in informal settlements. This study was carried out in the informal settlements of the Eastern Cape Province of South Africa, after the October 2012 floods. Increasing slope significantly raised the probability and level of damage by at least 30% in five of the seven sites, whereas proximity to river and wetlands (more than 100 m) was significant in only two of the sites and at lower levels. Multi-regression analysis highlighted that land cover, proximity to streams and household topographical location influenced the impact of flooding on housing structures. We found that the impact on housing structures in informal settlements during the floods were significantly influenced by their proximity to water bodies, slope factor and patterns of land cover.
- Full Text:
- Date Issued: 2018
Sacrificial males the potential role of copulation and predation in contributing to copepod sex-skewed ratios
- Wasserman, Ryan J, Weston, Mark, Weyl, Olaf, L F, Froneman, P William, Welch, Rebecca J, Vink, Tim J F, Dalu, Tatenda
- Authors: Wasserman, Ryan J , Weston, Mark , Weyl, Olaf, L F , Froneman, P William , Welch, Rebecca J , Vink, Tim J F , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467233 , vital:76843 , https://doi.org/10.1111/oik.04832
- Description: Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure.
- Full Text:
- Date Issued: 2018
- Authors: Wasserman, Ryan J , Weston, Mark , Weyl, Olaf, L F , Froneman, P William , Welch, Rebecca J , Vink, Tim J F , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467233 , vital:76843 , https://doi.org/10.1111/oik.04832
- Description: Predation is thought to play a selective role in the emergence of behavioural traits in prey. Differences in behaviour between prey demographics may, therefore, be driven by predation with select components of the population being less vulnerable to predators. While under controlled conditions prey demography has been shown to have consequences for predation success, investigations linking these implications to natural prey population demographics are scarce. Here we assess predator–prey dynamics between notonectid predators (backswimmers) and Lovenula raynerae (Copepoda), key faunal groups in temperate ephemeral pond ecosystems. Using a combination of field and experimental approaches we test for the development and mechanism of predation‐induced sex‐skewed ratios. A natural population of L. raynerae was tracked over time in relation to their predator (notonectid) and prey (Cladocera) numbers. In the laboratory, L. raynerae sex ratios were also assessed over time but in the absence of predation pressure.
- Full Text:
- Date Issued: 2018
Spatial and temporal variability in the nutritional quality of basal resources along a temperate river/estuary continuum
- Richoux, Nicole B, Bergamino, Leandro, Moyo, Sydney, Dalu, Tatenda
- Authors: Richoux, Nicole B , Bergamino, Leandro , Moyo, Sydney , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454375 , vital:75339 , xlink:href="https://doi.org/10.1016/j.orggeochem.2017.11.009"
- Description: The nature and quality of basal resources within aquatic food webs are complex and have the potential to shift over space and time. We used fatty acid analysis to assess variations in the nutritional structure of the suspended and basal pools along an entire river system, and to assess the contributions of vascular plant (i.e., mainly of terrestrial origin, but could include aquatic macrophytes) vs algal (i.e., aquatic origin) sources to the suspended particulate matter (SPM) pools. Samples were collected in a temperate South African river on four occasions between September 2012 and June 2013. We found orderly patterns in the fatty acid composition of the basal resources at the sites during most seasons. Regardless of site or season, the benthic algal pools (epiphyton, epipelon and epilithon) were the most nutritionally rich resources based on essential fatty acid contents and diatom indices. During early and late spring, proportions of essential fatty acids in the epiphyton decreased downstream where increased light was available, consistent with predictions from the light:nutrient hypothesis (but inconsistent with epilithon and epipelon results). There were substantial changes in vascular plant contributions to the SPM pools along the river, but the same patterns were not produced in all seasons. Of all the river models considered, the data were more consistent with the riverine productivity model, which particularly emphasises the importance of autotrophic production in rivers. Our study provides new detail on the complexity of basal resource nutritional quality and how it can shift along a lotic system over time.
- Full Text:
- Date Issued: 2018
- Authors: Richoux, Nicole B , Bergamino, Leandro , Moyo, Sydney , Dalu, Tatenda
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/454375 , vital:75339 , xlink:href="https://doi.org/10.1016/j.orggeochem.2017.11.009"
- Description: The nature and quality of basal resources within aquatic food webs are complex and have the potential to shift over space and time. We used fatty acid analysis to assess variations in the nutritional structure of the suspended and basal pools along an entire river system, and to assess the contributions of vascular plant (i.e., mainly of terrestrial origin, but could include aquatic macrophytes) vs algal (i.e., aquatic origin) sources to the suspended particulate matter (SPM) pools. Samples were collected in a temperate South African river on four occasions between September 2012 and June 2013. We found orderly patterns in the fatty acid composition of the basal resources at the sites during most seasons. Regardless of site or season, the benthic algal pools (epiphyton, epipelon and epilithon) were the most nutritionally rich resources based on essential fatty acid contents and diatom indices. During early and late spring, proportions of essential fatty acids in the epiphyton decreased downstream where increased light was available, consistent with predictions from the light:nutrient hypothesis (but inconsistent with epilithon and epipelon results). There were substantial changes in vascular plant contributions to the SPM pools along the river, but the same patterns were not produced in all seasons. Of all the river models considered, the data were more consistent with the riverine productivity model, which particularly emphasises the importance of autotrophic production in rivers. Our study provides new detail on the complexity of basal resource nutritional quality and how it can shift along a lotic system over time.
- Full Text:
- Date Issued: 2018
Trophic isotopic carbon variation increases with pond’s hydroperiod: evidence from an Austral ephemeral ecosystem
- Dalu, Tatenda, Wasserman, Ryan J, Froneman, P William, Weyl, Olaf, L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Froneman, P William , Weyl, Olaf, L F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467244 , vital:76844 , https://doi.org/10.1038/s41598-017-08026-6
- Description: Trophic variation in food web structure occurs among and within ecosystems. The magnitude of variation, however, differs from system to system. In ephemeral pond ecosystems, temporal dynamics are relatively more important than in many systems given that hydroperiod is the ultimate factor determining the presence of an aquatic state. Here, using stable isotopes we tested for changes in trophic chain length and shape over time in these dynamic aquatic ecosystems. We found that lower and intermediate trophic level structure increased over time. We discuss these findings within the context of temporal environmental stability. The dynamic nature of these ephemeral systems seems to be conducive to greater levels of intermediate and lower trophic level diversity, with omnivorous traits likely being advantageous.
- Full Text:
- Date Issued: 2017
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Froneman, P William , Weyl, Olaf, L F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467244 , vital:76844 , https://doi.org/10.1038/s41598-017-08026-6
- Description: Trophic variation in food web structure occurs among and within ecosystems. The magnitude of variation, however, differs from system to system. In ephemeral pond ecosystems, temporal dynamics are relatively more important than in many systems given that hydroperiod is the ultimate factor determining the presence of an aquatic state. Here, using stable isotopes we tested for changes in trophic chain length and shape over time in these dynamic aquatic ecosystems. We found that lower and intermediate trophic level structure increased over time. We discuss these findings within the context of temporal environmental stability. The dynamic nature of these ephemeral systems seems to be conducive to greater levels of intermediate and lower trophic level diversity, with omnivorous traits likely being advantageous.
- Full Text:
- Date Issued: 2017
Variation partitioning of benthic diatom community matrices: Effects of multiple variables on benthic diatom communities in an Austral temperate river system
- Dalu, Tatenda, Wasserman, Ryan J, Magoro, Mandla L, Mwedzi, Tongayi, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Magoro, Mandla L , Mwedzi, Tongayi , Froneman, P William , Weyl, Olaf L F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467182 , vital:76837 , https://doi.org/10.1016/j.scitotenv.2017.05.162
- Description: This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
- Full Text:
- Date Issued: 2017
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Magoro, Mandla L , Mwedzi, Tongayi , Froneman, P William , Weyl, Olaf L F
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/467182 , vital:76837 , https://doi.org/10.1016/j.scitotenv.2017.05.162
- Description: This study explores diatom community dynamics in a highly modified semi-arid temperate region river system characterised by inconsistent river flow. Various water and sediment environmental variables were assessed using a multi-faceted analysis approach to determine the spatio-temporal drivers of benthic diatom communities in the river system. Overall, the diatom community was generally dominated by pollution tolerant species, reflecting the anthropogenic intensity and activities on the river system. Diatom community composition was found to be largely determined by water column chemistry variables particularly nutrient concentrations in comparison to sediment chemistry and physical variables. Strong seasonal diatom species composition was also observed and this was driven by strong seasonal variations in nutrient loads and metal concentrations, a result of the variable water flow across the two seasons. However, the greater temporal variation in communities was observed in the smaller systems with the mainstream river system being more homogenous over time. In addition, diatom community composition and environmental variables were found to be different and more pronounced between streams and mainstream sites, than between canals and streams. The study highlights the complex interaction between water column, sediment and physical variables in determining the diatom species composition in small river systems. It also highlights the importance of river flow inconsistency as an indirect variable that alters primary drivers such as nutrient concentrations in the water column and heavy metal levels in the sediment.
- Full Text:
- Date Issued: 2017
Assessment of water quality based on diatom indices in a small temperate river system, Kowie River, South Africa
- Dalu, Tatenda, Bere, Taurai, Froneman, P William
- Authors: Dalu, Tatenda , Bere, Taurai , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123896 , vital:35514 , http://dx.doi.org/10.4314/wsa.v42i2.02
- Description: This study aimed to assess the impact of land use patterns on water quality and benthic diatom community structure and to test the applicability of diatom indices developed in other regions of the world to a small temperate southern African river system. Sampling was conducted at eight study sites along the length of the river on four separate occasions. Multivariate data analyses were performed on the diatom community dataset to specify the main gradients of floristic variation and to detect and visualize similarities in diatom samples in relation to land-use patterns within the catchment. One hundred and twelve (112) diatom species belonging to 36 genera were recorded during the study. Canonical correspondence analysis (CCA) demonstrated that variations in the benthic diatom community structure were best explained by ammonium, nitrate, conductivity, pH, temperature, resistivity and water flow. OMNIDIA was used for calculation of selected diatom water quality indices. A number of the indices, e.g., the trophic diatom index (TDI), eutrophication/pollution index and biological index of water quality (BIWQ), either under- or over-estimated the water quality of the system. With few exceptions, there were no significant correlations (p> 0.05) between the diatom indices’ values and the nutrient variables. The absence of any significant correlations between the diatom indices’ values and selected physico-chemical variables suggests that indices developed in other regions of the world may not be suitable for temperate southern African rivers.
- Full Text:
- Date Issued: 2016
- Authors: Dalu, Tatenda , Bere, Taurai , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123896 , vital:35514 , http://dx.doi.org/10.4314/wsa.v42i2.02
- Description: This study aimed to assess the impact of land use patterns on water quality and benthic diatom community structure and to test the applicability of diatom indices developed in other regions of the world to a small temperate southern African river system. Sampling was conducted at eight study sites along the length of the river on four separate occasions. Multivariate data analyses were performed on the diatom community dataset to specify the main gradients of floristic variation and to detect and visualize similarities in diatom samples in relation to land-use patterns within the catchment. One hundred and twelve (112) diatom species belonging to 36 genera were recorded during the study. Canonical correspondence analysis (CCA) demonstrated that variations in the benthic diatom community structure were best explained by ammonium, nitrate, conductivity, pH, temperature, resistivity and water flow. OMNIDIA was used for calculation of selected diatom water quality indices. A number of the indices, e.g., the trophic diatom index (TDI), eutrophication/pollution index and biological index of water quality (BIWQ), either under- or over-estimated the water quality of the system. With few exceptions, there were no significant correlations (p> 0.05) between the diatom indices’ values and the nutrient variables. The absence of any significant correlations between the diatom indices’ values and selected physico-chemical variables suggests that indices developed in other regions of the world may not be suitable for temperate southern African rivers.
- Full Text:
- Date Issued: 2016
Diatom-based water quality monitoring in southern Africa: challenges and future prospects
- Dalu, Tatenda, Froneman, P William
- Authors: Dalu, Tatenda , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124297 , vital:35590 , http://dx.doi.org/10.4314/wsa.v42i4.05
- Description: Diatoms are of significant ecological importance in aquatic ecosystems, which stems from their dynamic position at the base of the trophic web as primary producers. Because diatom communities have specific environmental requirements and respond rapidly to changes in environmental conditions they are often employed as a cost-effective method to assess anthropogenic impacts and health statuses of aquatic ecosystems, particularly in Europe and North America. The purpose of this review is to summarise the challenges and future prospects associated with biological water quality monitoring using diatoms with special focus on southern Africa. Much work still needs to be carried out on diatom tolerances, ecological preferences and ecophysiology. It is recommended that past research pertaining to African diatom taxonomy should be made readily accessible to all through electronic media for use as a reference point. Moreover, following the same approach as for macroinvertebrate biomonitoring, African and other developing countries can resort to intermediate diatom taxonomy (i.e. genus), which is easier, less time-consuming and requires less-skilled personnel. While the lack of capacity and baseline information on diatom community composition and ecological requirements represent significant hurdles, diatom biomonitoring potentially holds much promise for understanding the ecological functioning and management of aquatic ecosystems in southern Africa. The application of diatom-based water quality assessment protocols has direct and immediate value for use as an ‘added-value’ assessment tool in addition to the use of macroinvertebrates and fish indices as these can indicate anthropogenically impacted and pristine sites.
- Full Text:
- Date Issued: 2016
- Authors: Dalu, Tatenda , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124297 , vital:35590 , http://dx.doi.org/10.4314/wsa.v42i4.05
- Description: Diatoms are of significant ecological importance in aquatic ecosystems, which stems from their dynamic position at the base of the trophic web as primary producers. Because diatom communities have specific environmental requirements and respond rapidly to changes in environmental conditions they are often employed as a cost-effective method to assess anthropogenic impacts and health statuses of aquatic ecosystems, particularly in Europe and North America. The purpose of this review is to summarise the challenges and future prospects associated with biological water quality monitoring using diatoms with special focus on southern Africa. Much work still needs to be carried out on diatom tolerances, ecological preferences and ecophysiology. It is recommended that past research pertaining to African diatom taxonomy should be made readily accessible to all through electronic media for use as a reference point. Moreover, following the same approach as for macroinvertebrate biomonitoring, African and other developing countries can resort to intermediate diatom taxonomy (i.e. genus), which is easier, less time-consuming and requires less-skilled personnel. While the lack of capacity and baseline information on diatom community composition and ecological requirements represent significant hurdles, diatom biomonitoring potentially holds much promise for understanding the ecological functioning and management of aquatic ecosystems in southern Africa. The application of diatom-based water quality assessment protocols has direct and immediate value for use as an ‘added-value’ assessment tool in addition to the use of macroinvertebrates and fish indices as these can indicate anthropogenically impacted and pristine sites.
- Full Text:
- Date Issued: 2016
Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables
- Dalu, Tatenda, Richoux, Nicole B, Froneman, P William
- Authors: Dalu, Tatenda , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/67943 , vital:29172 , https://doi.org/10.1016/j.sajb.2015.06.004
- Description: Publisher version , The spatial and temporal patterns in benthic diatom community structure in temperate permanently open estuaries are poorly understood. In this study, we used a combination of multivariate and diversity indices to elucidate environmental factors associated with diatom community structure in the Kowie Estuary, South Africa. Benthic diatom samples were collected from three sites corresponding to the upper, middle and lower reaches of the estuary on four occasions over the period early spring 2012 to winter 2013. Among the 89 benthic diatoms observed, Entomoneis paludosa (W Smith) Reimer, Nitzschia reversa W Smith, Nitzschia closterium (Ehrenberg) W Smith, Pleurosigma elongatum W Smith, P. salinarum (Grunow) Grunow, Staurosira elliptica (Schumann) DM Williams & Round, Surirella brebissonii Krammer & Lange-Bertalot, and Surirella ovalis Brébisson were the numerically dominant species. Principal component analysis demonstrated that the diatom community structure was determined by a variety of factors including nutrient (ammonia, nitrate) concentrations, hydrology (e.g., water depth and flow) and pH. Hierarchical cluster analysis revealed the absence of any distinct spatial patterns, although distinct benthic diatom communities were recorded during the different sampling periods. The species richness was highest in the middle reach, decreasing from early spring to summer in all reaches. The results of the study provide important insights into the various factors that structure benthic diatom community composition within a permanently open temperate southern African estuary.
- Full Text: false
- Date Issued: 2016
- Authors: Dalu, Tatenda , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/67943 , vital:29172 , https://doi.org/10.1016/j.sajb.2015.06.004
- Description: Publisher version , The spatial and temporal patterns in benthic diatom community structure in temperate permanently open estuaries are poorly understood. In this study, we used a combination of multivariate and diversity indices to elucidate environmental factors associated with diatom community structure in the Kowie Estuary, South Africa. Benthic diatom samples were collected from three sites corresponding to the upper, middle and lower reaches of the estuary on four occasions over the period early spring 2012 to winter 2013. Among the 89 benthic diatoms observed, Entomoneis paludosa (W Smith) Reimer, Nitzschia reversa W Smith, Nitzschia closterium (Ehrenberg) W Smith, Pleurosigma elongatum W Smith, P. salinarum (Grunow) Grunow, Staurosira elliptica (Schumann) DM Williams & Round, Surirella brebissonii Krammer & Lange-Bertalot, and Surirella ovalis Brébisson were the numerically dominant species. Principal component analysis demonstrated that the diatom community structure was determined by a variety of factors including nutrient (ammonia, nitrate) concentrations, hydrology (e.g., water depth and flow) and pH. Hierarchical cluster analysis revealed the absence of any distinct spatial patterns, although distinct benthic diatom communities were recorded during the different sampling periods. The species richness was highest in the middle reach, decreasing from early spring to summer in all reaches. The results of the study provide important insights into the various factors that structure benthic diatom community composition within a permanently open temperate southern African estuary.
- Full Text: false
- Date Issued: 2016
Effects of substrate on essential fatty acids produced by phytobenthos in an austral temperate river system
- Dalu, Tatenda, Galloway, Aaron W E, Richoux, Nicole B, Froneman, P William
- Authors: Dalu, Tatenda , Galloway, Aaron W E , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68002 , vital:29179 , https://doi.org/10.1086/688698
- Description: Publisher version , Aquatic and riparian habitats increasingly are affected by anthropogenic stressors, but the effects of these stressors on the nutritional quality of primary producers are often unknown. We compared essential fatty acids (EFAs) in the phytobenthos (benthic algae) growing on different substrate types (bricks, clay tiles, rocks, macrophytes, and sediments) at 2 river sites subject to differing anthropogenic stressors (using nutrient concentration as a proxy) in a temperate southern hemisphere location. We hypothesized that the fatty acid (FA) content of phytobenthos changes in response to shifts in local nutrient availability but not substrate type. EFA content (18∶2ω6, 18∶3ω3, 20∶4ω6, 20∶5ω3, and 22∶6ω3) in the phytobenthos differed overall among substrates, sites, and seasons and was generally greater in summer than in autumn and winter. EFA content was significantly greater on artificial than natural substrates and was greater at the nutrient-enriched downstream site than at the upstream site. The response of EFA content at the downstream site suggests that land use affected the synthesis of EFAs by phytobenthos and, hence, food quality for aquatic consumers. These findings indicate a potential link between physical factors, such as substrate availability and land management, and the quality of basal food resources available to primary consumers in aquatic food webs.
- Full Text: false
- Date Issued: 2016
- Authors: Dalu, Tatenda , Galloway, Aaron W E , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68002 , vital:29179 , https://doi.org/10.1086/688698
- Description: Publisher version , Aquatic and riparian habitats increasingly are affected by anthropogenic stressors, but the effects of these stressors on the nutritional quality of primary producers are often unknown. We compared essential fatty acids (EFAs) in the phytobenthos (benthic algae) growing on different substrate types (bricks, clay tiles, rocks, macrophytes, and sediments) at 2 river sites subject to differing anthropogenic stressors (using nutrient concentration as a proxy) in a temperate southern hemisphere location. We hypothesized that the fatty acid (FA) content of phytobenthos changes in response to shifts in local nutrient availability but not substrate type. EFA content (18∶2ω6, 18∶3ω3, 20∶4ω6, 20∶5ω3, and 22∶6ω3) in the phytobenthos differed overall among substrates, sites, and seasons and was generally greater in summer than in autumn and winter. EFA content was significantly greater on artificial than natural substrates and was greater at the nutrient-enriched downstream site than at the upstream site. The response of EFA content at the downstream site suggests that land use affected the synthesis of EFAs by phytobenthos and, hence, food quality for aquatic consumers. These findings indicate a potential link between physical factors, such as substrate availability and land management, and the quality of basal food resources available to primary consumers in aquatic food webs.
- Full Text: false
- Date Issued: 2016
Emergent effects of structural complexity and temperature on predator–prey interactions
- Wasserman, Ryan J, Alexander, Mhairi E, Weyl, Olaf L F, Barrios‐O'Neill, Daniel, Froneman, P William, Dalu, Tatenda
- Authors: Wasserman, Ryan J , Alexander, Mhairi E , Weyl, Olaf L F , Barrios‐O'Neill, Daniel , Froneman, P William , Dalu, Tatenda
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69190 , vital:29444 , https://doi.org/10.1002/ecs2.1239
- Description: Ephemeral aquatic environments are important habitats for a variety of species. They are highly variable with regards to vegetation structure and physico‐chemical features that potentially mediate outcomes of biotic interactions. Multiple environmental variables and their emergent impacts on the relationship between prey consumption rate by a predator and prey density (functional response), however, are rarely assessed. Here, we investigated the combined effects of temperature and habitat complexity on the functional response of the freshwater predatory notonectid Enithares sobria on the cladoceran prey organism Daphnia longispina. A Type II functional response was observed for E. sobria predating on D. longispina and while temperature and habitat complexity had no effect on the response type, these environmental variables interacted with consequences for the magnitude of the functional responses. Overall, structural complexity favored the predator as greater consumption was observed in the most complex habitat treatment. Temperature effects were also evident although these effects were not unidirectional with regard to treatment factor gradients as predators were the most successful at intermediary temperatures. Furthermore, there was a complex interplay between habitat complexity and temperature, with attack rates being greatest at low and high complexities within intermediate temperatures, while at zero complexity attack rates were greatest at the lowest temperature. The effect of habitat on handling times was only evident in the low temperature treatments which decreased steadily with each increase in complexity. Through the application of functional responses the synergistic effects of multiple environmental drivers on predator–prey interaction outcomes have been highlighted, adding insight into how interactions among species may be affected by natural or artificially induced environmental variability.
- Full Text:
- Date Issued: 2016
- Authors: Wasserman, Ryan J , Alexander, Mhairi E , Weyl, Olaf L F , Barrios‐O'Neill, Daniel , Froneman, P William , Dalu, Tatenda
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69190 , vital:29444 , https://doi.org/10.1002/ecs2.1239
- Description: Ephemeral aquatic environments are important habitats for a variety of species. They are highly variable with regards to vegetation structure and physico‐chemical features that potentially mediate outcomes of biotic interactions. Multiple environmental variables and their emergent impacts on the relationship between prey consumption rate by a predator and prey density (functional response), however, are rarely assessed. Here, we investigated the combined effects of temperature and habitat complexity on the functional response of the freshwater predatory notonectid Enithares sobria on the cladoceran prey organism Daphnia longispina. A Type II functional response was observed for E. sobria predating on D. longispina and while temperature and habitat complexity had no effect on the response type, these environmental variables interacted with consequences for the magnitude of the functional responses. Overall, structural complexity favored the predator as greater consumption was observed in the most complex habitat treatment. Temperature effects were also evident although these effects were not unidirectional with regard to treatment factor gradients as predators were the most successful at intermediary temperatures. Furthermore, there was a complex interplay between habitat complexity and temperature, with attack rates being greatest at low and high complexities within intermediate temperatures, while at zero complexity attack rates were greatest at the lowest temperature. The effect of habitat on handling times was only evident in the low temperature treatments which decreased steadily with each increase in complexity. Through the application of functional responses the synergistic effects of multiple environmental drivers on predator–prey interaction outcomes have been highlighted, adding insight into how interactions among species may be affected by natural or artificially induced environmental variability.
- Full Text:
- Date Issued: 2016
Monitoring of invertebrate and fish recovery following river rehabilitation using rotenone in the Rondegat River
- Weyl, Olaf L F, Barrow, S, Bellingan, Terence A, Dalu, Tatenda, Ellender, Bruce R, Esler, K, Impson, D, Gouws, Jeanne, Jordaan, M, Villet, Martin H, Wasserman, Ryan J, Woodford, Darragh J
- Authors: Weyl, Olaf L F , Barrow, S , Bellingan, Terence A , Dalu, Tatenda , Ellender, Bruce R , Esler, K , Impson, D , Gouws, Jeanne , Jordaan, M , Villet, Martin H , Wasserman, Ryan J , Woodford, Darragh J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442411 , vital:73982 , https://www.wrc.org.za/wp-content/uploads/mdocs/2261.pdf
- Description: Fish invasions have been cited as a primary threat to imperilled South African fishes and other aquatic fauna. As a result, the management and control of alien invasive species is a legislated priority in South Africa. From a river rehabilitation perspective, eradicating alien fish allows for the rehabilitation of several kilometres of river, with very significant benefits for the endangered fish species present and for the associated aquatic biota. In South Africa, the piscicide rotenone is one of the preferred methods for achieving eradication.
- Full Text:
- Date Issued: 2016
- Authors: Weyl, Olaf L F , Barrow, S , Bellingan, Terence A , Dalu, Tatenda , Ellender, Bruce R , Esler, K , Impson, D , Gouws, Jeanne , Jordaan, M , Villet, Martin H , Wasserman, Ryan J , Woodford, Darragh J
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/442411 , vital:73982 , https://www.wrc.org.za/wp-content/uploads/mdocs/2261.pdf
- Description: Fish invasions have been cited as a primary threat to imperilled South African fishes and other aquatic fauna. As a result, the management and control of alien invasive species is a legislated priority in South Africa. From a river rehabilitation perspective, eradicating alien fish allows for the rehabilitation of several kilometres of river, with very significant benefits for the endangered fish species present and for the associated aquatic biota. In South Africa, the piscicide rotenone is one of the preferred methods for achieving eradication.
- Full Text:
- Date Issued: 2016
Nature and source of suspended particulate matter and detritus along an austral temperate river–estuary continuum, assessed using stable isotope analysis
- Dalu, Tatenda, Richoux, Nicole B, Froneman, P William
- Authors: Dalu, Tatenda , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68012 , vital:29181 , https://doi.org/10.1007/s10750-015-2480-1
- Description: Publisher version , Ecologists are interested in the factors that control, and the variability in, the contributions of different sources to mixed organic materials travelling through lotic systems. We hypothesized that the source matter fuelling mixed organic pools in a river–estuary continuum varies over space and time. Samples of the mixed organic pools were collected along a small temperate river (Kowie River) in southern Africa during early and late spring, summer and winter. The C:N ratios of suspended particulate matter (SPM) collected during summer and winter indicated that the lower reaches of the system had similar organic matter contributions. Stable isotope analysis in R revealed that aquatic macrophytes were significant contributors to SPM in the upper reaches. Bulk detritus had large allochthonous matter components in the lower reaches, and contributions of aquatic macrophytes and benthic algae were high (>50%) in the upper to middle reaches. The evaluation of organic matter contributions to SPM and detritus along the river–estuary continuum provided a baseline assessment of the nature and sources of potential food for consumers inhabiting different locations during different seasons. Incorporating SPM and detritus spatio-temporal variations in food web studies will improve our understanding of carbon flow in aquatic systems.
- Full Text: false
- Date Issued: 2016
- Authors: Dalu, Tatenda , Richoux, Nicole B , Froneman, P William
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68012 , vital:29181 , https://doi.org/10.1007/s10750-015-2480-1
- Description: Publisher version , Ecologists are interested in the factors that control, and the variability in, the contributions of different sources to mixed organic materials travelling through lotic systems. We hypothesized that the source matter fuelling mixed organic pools in a river–estuary continuum varies over space and time. Samples of the mixed organic pools were collected along a small temperate river (Kowie River) in southern Africa during early and late spring, summer and winter. The C:N ratios of suspended particulate matter (SPM) collected during summer and winter indicated that the lower reaches of the system had similar organic matter contributions. Stable isotope analysis in R revealed that aquatic macrophytes were significant contributors to SPM in the upper reaches. Bulk detritus had large allochthonous matter components in the lower reaches, and contributions of aquatic macrophytes and benthic algae were high (>50%) in the upper to middle reaches. The evaluation of organic matter contributions to SPM and detritus along the river–estuary continuum provided a baseline assessment of the nature and sources of potential food for consumers inhabiting different locations during different seasons. Incorporating SPM and detritus spatio-temporal variations in food web studies will improve our understanding of carbon flow in aquatic systems.
- Full Text: false
- Date Issued: 2016
Trophic interactions in an austral temperate ephemeral pond inferred using stable isotope analysis
- Dalu, Tatenda, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J
- Authors: Dalu, Tatenda , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68022 , vital:29185 , https://doi.org/10.1007/s10750-015-2533-5
- Description: Publisher version , Ephemeral ponds are vulnerable aquatic habitats which are difficult to protect given their dynamic nature and sensitivity to degradation during dry periods. Little information is available on these habitats in austral regions, with almost no information on food-web structure and complexity. The study aimed to assess trophic interactions among dominant organisms in an ephemeral pond food web, and investigate the importance of autochthonous and allochthonous carbon, using 13C and 15N isotopes. Results of the investigation suggest that the food web comprised four trophic levels, with the top predators being Notonectids (Notonecta sp.) and diving beetles (Cybister tripunctatus (Olivier)). Intermediary trophic levels comprised zooplankton (daphniids and copepodids), macroinvertebrates (e.g. micronectids and molluscs) and tadpoles. Generalist feeders dominated the higher trophic levels (>3) with specialists comprising the lower trophic levels (≤3). The consumers preferred autochthonous fine particulate organic matter, epiphyton and submerged macrophyte organic matter sources over allochthonous sources. Autochthonous organic matter was transferred to the food web via zooplankton and select macroinvertebrates including Micronecta sp. and Physa sp. The food-web structure within the pond appeared to reflect the secondary stage of trophic structural complexity in the evolution of ephemeral ponds over the course of their hydro-period.
- Full Text: false
- Date Issued: 2016
- Authors: Dalu, Tatenda , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J
- Date: 2016
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68022 , vital:29185 , https://doi.org/10.1007/s10750-015-2533-5
- Description: Publisher version , Ephemeral ponds are vulnerable aquatic habitats which are difficult to protect given their dynamic nature and sensitivity to degradation during dry periods. Little information is available on these habitats in austral regions, with almost no information on food-web structure and complexity. The study aimed to assess trophic interactions among dominant organisms in an ephemeral pond food web, and investigate the importance of autochthonous and allochthonous carbon, using 13C and 15N isotopes. Results of the investigation suggest that the food web comprised four trophic levels, with the top predators being Notonectids (Notonecta sp.) and diving beetles (Cybister tripunctatus (Olivier)). Intermediary trophic levels comprised zooplankton (daphniids and copepodids), macroinvertebrates (e.g. micronectids and molluscs) and tadpoles. Generalist feeders dominated the higher trophic levels (>3) with specialists comprising the lower trophic levels (≤3). The consumers preferred autochthonous fine particulate organic matter, epiphyton and submerged macrophyte organic matter sources over allochthonous sources. Autochthonous organic matter was transferred to the food web via zooplankton and select macroinvertebrates including Micronecta sp. and Physa sp. The food-web structure within the pond appeared to reflect the secondary stage of trophic structural complexity in the evolution of ephemeral ponds over the course of their hydro-period.
- Full Text: false
- Date Issued: 2016
A re-examination of the type material of Entomoneis paludosa (W Smith) Reimer and its morphology and distribution in African waters
- Richoux, Nicole B, Taylor, J C, Dalu, Tatenda, Froneman, P William
- Authors: Richoux, Nicole B , Taylor, J C , Dalu, Tatenda , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69179 , vital:29440 , https://doi.org/10.5507/fot.2015.002
- Description: The current study aims to enhance the understanding of the distribution and morphology of the diatom Entomoneis paludosa W Smith 1853 in African waters. The type material of Entomoneis paludosa (W Smith) Reimer was examined using light and scanning electron microscopy and the morphological characters were compared with new specimens sampled from a temperate river in South Africa. The wider distribution of this taxon on the African continent is discussed, and its relationship to water quality variables.
- Full Text:
- Date Issued: 2015
- Authors: Richoux, Nicole B , Taylor, J C , Dalu, Tatenda , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/69179 , vital:29440 , https://doi.org/10.5507/fot.2015.002
- Description: The current study aims to enhance the understanding of the distribution and morphology of the diatom Entomoneis paludosa W Smith 1853 in African waters. The type material of Entomoneis paludosa (W Smith) Reimer was examined using light and scanning electron microscopy and the morphological characters were compared with new specimens sampled from a temperate river in South Africa. The wider distribution of this taxon on the African continent is discussed, and its relationship to water quality variables.
- Full Text:
- Date Issued: 2015
An assessment of chlorophyll-a concentration spatio-temporal variation using Landsat satellite data, in a small tropical reservoir
- Dalu, Tatenda, Dube, Timothy, Froneman, P William, Sachikonye, Mwazvita T B, Clegg, Bruce W, Nhiwatiwa, Tamuka
- Authors: Dalu, Tatenda , Dube, Timothy , Froneman, P William , Sachikonye, Mwazvita T B , Clegg, Bruce W , Nhiwatiwa, Tamuka
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68042 , vital:29189 , https://doi.org/10.1080/10106049.2015.1027292
- Description: Publisher version , Traditional approaches to monitoring aquatic systems are often limited by the need for data collection which often is time-consuming, expensive and non-continuous. The aim of the study was to map the spatio-temporal chlorophyll-a concentration changes in Malilangwe Reservoir, Zimbabwe as an indicator of phytoplankton biomass and trophic state when the reservoir was full (year 2000) and at its lowest capacity (year 2011), using readily available Landsat multispectral images. Medium-spatial resolution (30 m) Landsat multispectral Thematic Mapper TM 5 and ETM+ images for May to December 1999–2000 and 2010–2011 were used to derive chlorophyll-a concentrations. In situ measured chlorophyll-a and total suspended solids (TSS) concentrations for 2011 were employed to validate the Landsat chlorophyll-a and TSS estimates. The study results indicate that Landsat-derived chlorophyll-a and TSS estimates were comparable with field measurements. There was a considerable wet vs. dry season differences in total chlorophyll-a concentration, Secchi disc depth, TSS and turbidity within the reservoir. Using Permutational multivariate analyses of variance (PERMANOVA) analysis, there were significant differences (p < 0.0001) for chlorophyll-a concentration among sites, months and years whereas TSS was significant during the study months (p < 0.05). A strong positive significant correlation among both predicted TSS vs. chlorophyll-a and measured vs. predicted chlorophyll-a and TSS concentrations as well as an inverse relationship between reservoir chlorophyll-a concentrations and water level were found (p < 0.001 in all cases). In conclusion, total chlorophyll-a concentration in Malilangwe Reservoir was successfully derived from Landsat remote sensing data suggesting that the Landsat sensor is suitable for real-time monitoring over relatively short timescales and for small reservoirs. Satellite data can allow for surveying of chlorophyll-a concentration in aquatic ecosystems, thus, providing invaluable data in data scarce (limited on site ground measurements) environments.
- Full Text: false
- Date Issued: 2015
- Authors: Dalu, Tatenda , Dube, Timothy , Froneman, P William , Sachikonye, Mwazvita T B , Clegg, Bruce W , Nhiwatiwa, Tamuka
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68042 , vital:29189 , https://doi.org/10.1080/10106049.2015.1027292
- Description: Publisher version , Traditional approaches to monitoring aquatic systems are often limited by the need for data collection which often is time-consuming, expensive and non-continuous. The aim of the study was to map the spatio-temporal chlorophyll-a concentration changes in Malilangwe Reservoir, Zimbabwe as an indicator of phytoplankton biomass and trophic state when the reservoir was full (year 2000) and at its lowest capacity (year 2011), using readily available Landsat multispectral images. Medium-spatial resolution (30 m) Landsat multispectral Thematic Mapper TM 5 and ETM+ images for May to December 1999–2000 and 2010–2011 were used to derive chlorophyll-a concentrations. In situ measured chlorophyll-a and total suspended solids (TSS) concentrations for 2011 were employed to validate the Landsat chlorophyll-a and TSS estimates. The study results indicate that Landsat-derived chlorophyll-a and TSS estimates were comparable with field measurements. There was a considerable wet vs. dry season differences in total chlorophyll-a concentration, Secchi disc depth, TSS and turbidity within the reservoir. Using Permutational multivariate analyses of variance (PERMANOVA) analysis, there were significant differences (p < 0.0001) for chlorophyll-a concentration among sites, months and years whereas TSS was significant during the study months (p < 0.05). A strong positive significant correlation among both predicted TSS vs. chlorophyll-a and measured vs. predicted chlorophyll-a and TSS concentrations as well as an inverse relationship between reservoir chlorophyll-a concentrations and water level were found (p < 0.001 in all cases). In conclusion, total chlorophyll-a concentration in Malilangwe Reservoir was successfully derived from Landsat remote sensing data suggesting that the Landsat sensor is suitable for real-time monitoring over relatively short timescales and for small reservoirs. Satellite data can allow for surveying of chlorophyll-a concentration in aquatic ecosystems, thus, providing invaluable data in data scarce (limited on site ground measurements) environments.
- Full Text: false
- Date Issued: 2015
An Assessment of the Effect of Rotenone on Selected Non-Target Aquatic Fauna
- Dalu, Tatenda, Wasserman, Ryan J, Jordaan, Martine, Froneman, P William, Weyl, Olaf L F
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Wasserman, Ryan J , Jordaan, Martine , Froneman, P William , Weyl, Olaf L F
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124240 , vital:35579 , https://doi.org/10.1371/journal.pone.0142140.g001
- Description: Rotenone, a naturally occurring ketone, is widely employed for the management of invasive fish species. The use of rotenone poses serious challenges to conservation practitioners due to its impacts on non-target organisms including amphibians and macroinvertebrates. Using laboratory studies, we investigated the effects of different rotenone concentrations (0, 12.5, 25, 37.5, 50, 100 μg L-1) on selected invertebrate groups; Aeshnidae, Belostomatids, Decapods, Ephemeroptera, Pulmonata and zooplankton over a period of 18 hours. Based on field observations and body size, we hypothesized that Ephemeropterans and zooplank- ton would be more susceptible to rote none than Decapods, Belostomatids and snails. Experimental results supported this hypothesis and mortality and behaviour effects varied considerably between taxa, ranging from no effect (crab Potamonuates sidneyi) to 100% mortality (Daphnia pulex and Paradiaptomus lamellatus). Planktonic invertebrates were par- ticularly sensitive to rotenone even at very low concentrations. Future research should investigate the recovery time of invertebrate communities after the application of rotenone and conduct field assessments assessing the longer term effects of rotenone exposure on the population dynamics of those less sensitive organisms.
- Full Text:
- Date Issued: 2015
Assessment of the spatial and temporal variations in periphyton communities along a small temperate river system: A multimetric and stable isotope analysis approach
- Dalu, Tatenda, Bere, Taurai, Richoux, Nicole B, Froneman, P William
- Authors: Dalu, Tatenda , Bere, Taurai , Richoux, Nicole B , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124249 , vital:35580 , https://doi.org/10.1016/j.sajb.2015.05.028
- Description: Periphyton community structure and stable isotope values have been identified as potential indicators of anthropogenic nitrogen pollution, an increasingly important challenge in aquatic systems. The aim of the study was to assess the spatio-temporal changes in periphyton characteristics to identify potential anthropogenic nitrogen pollution sources such as agricultural and sewage discharge within the Kowie River catchment, South Africa. Periphyton was collected once a season from five sites between September 2012 and May 2013. Diversity indices, multimetric and stable isotope analyses were employed for describing the spatial and temporal dynamics of periphyton community assemblages. Water depth, salinity, resistivity, oxygen reduction potential, nitrates, water velocity and conductivity were the major factors affecting periphyton community structure. Eighty-seven periphyton taxa belonging to 43 genera were recorded throughout the study sites and periods. Periphyton species richness, abundance and stable isotope signatures differed significantly among sites but not among seasons. The lower sections of the Kowie River were polluted by anthropogenic sources as indicated by the high periphytic isotopic nitrogen values (7.9–15.2‰) compared to the pristine upstream sites (4–8‰). We recommend that researchers use a combination of community structure and stable isotope measurements to monitor the periphyton in lotic systems.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda , Bere, Taurai , Richoux, Nicole B , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/124249 , vital:35580 , https://doi.org/10.1016/j.sajb.2015.05.028
- Description: Periphyton community structure and stable isotope values have been identified as potential indicators of anthropogenic nitrogen pollution, an increasingly important challenge in aquatic systems. The aim of the study was to assess the spatio-temporal changes in periphyton characteristics to identify potential anthropogenic nitrogen pollution sources such as agricultural and sewage discharge within the Kowie River catchment, South Africa. Periphyton was collected once a season from five sites between September 2012 and May 2013. Diversity indices, multimetric and stable isotope analyses were employed for describing the spatial and temporal dynamics of periphyton community assemblages. Water depth, salinity, resistivity, oxygen reduction potential, nitrates, water velocity and conductivity were the major factors affecting periphyton community structure. Eighty-seven periphyton taxa belonging to 43 genera were recorded throughout the study sites and periods. Periphyton species richness, abundance and stable isotope signatures differed significantly among sites but not among seasons. The lower sections of the Kowie River were polluted by anthropogenic sources as indicated by the high periphytic isotopic nitrogen values (7.9–15.2‰) compared to the pristine upstream sites (4–8‰). We recommend that researchers use a combination of community structure and stable isotope measurements to monitor the periphyton in lotic systems.
- Full Text:
- Date Issued: 2015
Connectivity through allochthony: Reciprocal links between adjacent aquatic and terrestrial ecosystems in South Africa
- Richoux, Nicole B, Moyo, Sydney, Chari, Lenin D, Bergamino, Leandro, Carassou, Laure, Dalu, Tatenda, Hean, Jeffrey W, Sikutshwa, Likho, Gininda, Simphiwe, Magoro, Mandla L, Perhar, Gurbir, Ni, Felicity, Villet, Martin H, Whitfield, Alan K, Parker, Daniel M, Froneman, P William, Arhonditsis, George, Craig, Adrian J F K
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
- Authors: Richoux, Nicole B , Moyo, Sydney , Chari, Lenin D , Bergamino, Leandro , Carassou, Laure , Dalu, Tatenda , Hean, Jeffrey W , Sikutshwa, Likho , Gininda, Simphiwe , Magoro, Mandla L , Perhar, Gurbir , Ni, Felicity , Villet, Martin H , Whitfield, Alan K , Parker, Daniel M , Froneman, P William , Arhonditsis, George , Craig, Adrian J F K
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , report
- Identifier: http://hdl.handle.net/10962/438363 , vital:73454 , ISBN 978-1-4312-0679-7 , https://wrcwebsite.azurewebsites.net/wp-content/uploads/mdocs/2186-1-15.pdf
- Description: An important aspect of the dynamics of nutrients and pollutants in natural systems is captured in the concept of allochthony, founded on the observation that nutrients and energy in a variety of forms are transferred between adjacent habitats, com-munities and ecosystems that are not routinely considered as connected. Different forms of nutrients and energy move across the conceptual boundaries of habitats via organisms’ activities or physical processes such as wind or water currents, and these transfers can represent important food subsidies. Such cross-partition ecolog-ical subsidies can augment the nutritional condition, biomass and biodiversity of communities, particularly where local production (or autochthony) alone may be inadequate to support local food webs. Furthermore, organic subsidies can influ-ence population dynamics, community interactions and ecosystem processes, and can represent dominant flux inputs in ecosystem budgets. Our intention was to ex-plore organic nutrient fluxes in relation to a primarily lotic (i.e. flowing) aquatic sys-tem at the scale of a hydrological catchment.
- Full Text:
- Date Issued: 2015
Fish predation regimes modify benthic diatom community structures: experimental evidence from an in situ mesocosm study
- Wasserman, Ryan J, Vink, Tim J F, Dalu, Tatenda, Froneman, P William
- Authors: Wasserman, Ryan J , Vink, Tim J F , Dalu, Tatenda , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68052 , vital:29190 , https://doi.org/10.1111/aec.12255
- Description: Publisher version , Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator-free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.
- Full Text: false
- Date Issued: 2015
- Authors: Wasserman, Ryan J , Vink, Tim J F , Dalu, Tatenda , Froneman, P William
- Date: 2015
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/68052 , vital:29190 , https://doi.org/10.1111/aec.12255
- Description: Publisher version , Diatoms are important primary producers in shallow water environments. Few studies have assessed the importance of biological interactions in structuring these communities. In the present study, benthic diatom community structure in relation to manipulated food webs was assessed using in situ mesocosms, whereby predator-free environments and environments comprising two different fish species were assessed. Zooplankton abundance, settled algal biomass and the diatom community were monitored over a 12‐day period across each of the three trophic scenarios. Differences among treatments over time were observed in zooplankton abundances, particularly copepods. Similarly, the benthic diatom community structure changed significantly over time across the three trophic treatments. However, no differences in total algal biomass were found among treatments. This was likely the result of non‐diatom phytoplankton contributions. We propose that the benthic diatom community structure within the mesocosms was influenced by trophic cascades and potentially through direct consumption by the fish. The study highlights that not only are organisms at the base of the food web affected by predators at the top of the food web, but that predator identity is potentially an important consideration for predator–prey interaction outcomes with consequences for multiple trophic levels.
- Full Text: false
- Date Issued: 2015
Spatio-temporal variation in the phytobenthos and phytoplankton community structure and composition of particulate matter along a river-estuary continuum assessed using microscopic and stable isotope analyses
- Authors: Dalu, Tatenda
- Date: 2015
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54416 , vital:26563
- Description: Phytoplankton and phytobenthos communities play an important role in lotic systems as primary producers providing essential biomolecules to higher trophic oganisms and are important indicators for environmental or ecological change. In this thesis, field studies (observational and experimental) along a river–estuary continuum were conducted to assess the spatio-temporal variation and development of phytobenthos and phytoplankton communities using a combination of stable isotope and community analyses in a temperate southern African system across four study periods: September (early spring) and November/December (late spring) 2012, and February (summer) and May/June (winter) 2013. Additionally, the sources and composition of the particulate organic matter were also analysed using stable isotope (δ15N and δ13C) analysis. The effects of substrate type and flood occurrence were assessed through experimental studies at an up- and downstream site of the river after a major flood event that occurred between October and November 2012. Common household tiles were used as artificial substrates to study the development/succession of phytobenthos communities after the flood disturbance. Distinct diatom communities were observed between upstream and downstream sites and at each site, community structure changed with time indicating succession. In addition to recording diatom characteristics on three natural substrates, namely; macrophytes, rocks and sediment, artificial substrates observations were also made on three different types of artificial substrates, namely; brick, brown clay and grey clay tiles. The natural (species richness 78) and artificial substrates (sp. richness 93) had different communities with the latter having greater species richness. Common phytobenthos taxa were not restricted to a single substrate but preference was generally high for the artificial substrates, especially brown tiles (mean sp. richness 47). Results of the redundancy analysis (RDA) analysis indicated that ammonium, conductivity, total dissolved solids, salinity, pH, oxygen reduction potential, phosphate and water depth were the major determinants of the phytobenthos composition at the two sites. The spatio–temporal variation of phytoplankton and phytobenthos communities and allochthonous organic matter along the river–estuary continuum was assessed at 8 sites using a combination of community and stable isotope analyses. A total of 178 species belonging to 78 genera were recorded with diatoms being predominant, accounting for 81.9 % of the total abundance. The total chl-a concentration along the river-estuary continuum increased from spring to a high in summer before decreasing to a low in winter. Periphyton communities were observed to be significantly different across sites (p < 0.05) in terms of species richness, abundances and isotopically The high periphytic δ15N values (range 7.9–15.2 ‰) recorded at the downstream sites compared to the pristine upstream sites (δ15N values range 4–7 ‰) suggest nutrient enrichment most likely derived from anthropogenic sources. Overall, our results reveal general patterns of periphyton communities and stable isotopes and provide improved information in the use of periphyton δ15N as an excellent indicator of anthropogenic nitrogen pollution. Ecologists are interested in the factors that control, and the variability in, the contributions of different sources to mixed organic materials traveling through lotic systems. We hypothesized that the source matter fuelling mixed organic pools in a river-estuary continuum varies over space and time, with the upper reaches of a system characterized by allochthonous-dominated material and autochthonous contributions becoming more important in the lower reaches. Samples of the mixed organic pools and allochthonous and autochthonous source materials were collected during the four study periods. The C:N ratios of suspended particulate matter (SPM) collected during summer and winter indicated that the lower reaches of the system had similar organic matter contributions from the freshwater and terrestrial sources. Stable isotope analysis in R revealed that the contributions of autochthonous organic matter were high in SPM along the entire continuum, and aquatic macrophytes were significant contributors to SPM specifically in the upper reaches. The terrestrial leaves made major contributions to the SPM in the middle regions of the system (i.e. downstream sites of the river, particularly in early and late spring). Bulk detritus had large allochthonous matter components in the lower reaches (estuary), and the contributions of aquatic macrophytes and benthic algae to bulk detritus were high (> 50 %) in the upper to middle reaches (river), but low (< 20 %) in the lower reaches (estuary). The current investigation represents the first attempt to assess the validity of the River Continuum Concept (RCC) in a southern African temperate river. The phytoplankton and phytobenthos communities, and chl-a concentration followed a trend similar to that proposed for the river continuum concept (RCC). The middle reaches based on the phytobenthos or phytoplankton communities and chl-a concentrations which were employed as proxies for primary production, were the most productive, while the upper reaches were the least primary productive. The evaluation of organic matter contributions to the SPM and detritus along the river–estuary continuum provided a baseline assessment of the nature and sources of potential food for consumers inhabiting different locations during different times of the year. Incorporating such spatio-temporal variations in SPM and detritus into food web studies will improve our understanding of the flow of carbon through aquatic systems.
- Full Text:
- Date Issued: 2015
- Authors: Dalu, Tatenda
- Date: 2015
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/54416 , vital:26563
- Description: Phytoplankton and phytobenthos communities play an important role in lotic systems as primary producers providing essential biomolecules to higher trophic oganisms and are important indicators for environmental or ecological change. In this thesis, field studies (observational and experimental) along a river–estuary continuum were conducted to assess the spatio-temporal variation and development of phytobenthos and phytoplankton communities using a combination of stable isotope and community analyses in a temperate southern African system across four study periods: September (early spring) and November/December (late spring) 2012, and February (summer) and May/June (winter) 2013. Additionally, the sources and composition of the particulate organic matter were also analysed using stable isotope (δ15N and δ13C) analysis. The effects of substrate type and flood occurrence were assessed through experimental studies at an up- and downstream site of the river after a major flood event that occurred between October and November 2012. Common household tiles were used as artificial substrates to study the development/succession of phytobenthos communities after the flood disturbance. Distinct diatom communities were observed between upstream and downstream sites and at each site, community structure changed with time indicating succession. In addition to recording diatom characteristics on three natural substrates, namely; macrophytes, rocks and sediment, artificial substrates observations were also made on three different types of artificial substrates, namely; brick, brown clay and grey clay tiles. The natural (species richness 78) and artificial substrates (sp. richness 93) had different communities with the latter having greater species richness. Common phytobenthos taxa were not restricted to a single substrate but preference was generally high for the artificial substrates, especially brown tiles (mean sp. richness 47). Results of the redundancy analysis (RDA) analysis indicated that ammonium, conductivity, total dissolved solids, salinity, pH, oxygen reduction potential, phosphate and water depth were the major determinants of the phytobenthos composition at the two sites. The spatio–temporal variation of phytoplankton and phytobenthos communities and allochthonous organic matter along the river–estuary continuum was assessed at 8 sites using a combination of community and stable isotope analyses. A total of 178 species belonging to 78 genera were recorded with diatoms being predominant, accounting for 81.9 % of the total abundance. The total chl-a concentration along the river-estuary continuum increased from spring to a high in summer before decreasing to a low in winter. Periphyton communities were observed to be significantly different across sites (p < 0.05) in terms of species richness, abundances and isotopically The high periphytic δ15N values (range 7.9–15.2 ‰) recorded at the downstream sites compared to the pristine upstream sites (δ15N values range 4–7 ‰) suggest nutrient enrichment most likely derived from anthropogenic sources. Overall, our results reveal general patterns of periphyton communities and stable isotopes and provide improved information in the use of periphyton δ15N as an excellent indicator of anthropogenic nitrogen pollution. Ecologists are interested in the factors that control, and the variability in, the contributions of different sources to mixed organic materials traveling through lotic systems. We hypothesized that the source matter fuelling mixed organic pools in a river-estuary continuum varies over space and time, with the upper reaches of a system characterized by allochthonous-dominated material and autochthonous contributions becoming more important in the lower reaches. Samples of the mixed organic pools and allochthonous and autochthonous source materials were collected during the four study periods. The C:N ratios of suspended particulate matter (SPM) collected during summer and winter indicated that the lower reaches of the system had similar organic matter contributions from the freshwater and terrestrial sources. Stable isotope analysis in R revealed that the contributions of autochthonous organic matter were high in SPM along the entire continuum, and aquatic macrophytes were significant contributors to SPM specifically in the upper reaches. The terrestrial leaves made major contributions to the SPM in the middle regions of the system (i.e. downstream sites of the river, particularly in early and late spring). Bulk detritus had large allochthonous matter components in the lower reaches (estuary), and the contributions of aquatic macrophytes and benthic algae to bulk detritus were high (> 50 %) in the upper to middle reaches (river), but low (< 20 %) in the lower reaches (estuary). The current investigation represents the first attempt to assess the validity of the River Continuum Concept (RCC) in a southern African temperate river. The phytoplankton and phytobenthos communities, and chl-a concentration followed a trend similar to that proposed for the river continuum concept (RCC). The middle reaches based on the phytobenthos or phytoplankton communities and chl-a concentrations which were employed as proxies for primary production, were the most productive, while the upper reaches were the least primary productive. The evaluation of organic matter contributions to the SPM and detritus along the river–estuary continuum provided a baseline assessment of the nature and sources of potential food for consumers inhabiting different locations during different times of the year. Incorporating such spatio-temporal variations in SPM and detritus into food web studies will improve our understanding of the flow of carbon through aquatic systems.
- Full Text:
- Date Issued: 2015