Repurposing a polymer precursor: Synthesis and in vitro medicinal potential of ferrocenyl 1, 3-benzoxazine derivatives
- Mbaba, Mziyanda, Dingle, Laura M K, Cash, Devon, de la Mare, Jo-Anne, Laming, Dustin, Taylor, Dale, Hoppe, Heinrich C, Edkins, Adrienne L, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Cash, Devon , de la Mare, Jo-Anne , Laming, Dustin , Taylor, Dale , Hoppe, Heinrich C , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165395 , vital:41240 , https://doi.org/10.1016/j.ejmech.2019.111924
- Description: Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis.
- Full Text:
- Date Issued: 2020
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Cash, Devon , de la Mare, Jo-Anne , Laming, Dustin , Taylor, Dale , Hoppe, Heinrich C , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165395 , vital:41240 , https://doi.org/10.1016/j.ejmech.2019.111924
- Description: Cancer and malaria remain relevant pathologies in modern medicinal chemistry endeavours. This is compounded by the threat of development of resistance to existing clinical drugs in use as first-line option for treatment of these diseases. To counter this threat, strategies such as drug repurposing and hybridization are constantly adapted in contemporary drug discovery for the expansion of the drug arsenal and generation of novel chemotypes with potential to avert or delay resistance. In the present study, a polymer precursor scaffold, 1,3-benzoxazine, has been repurposed by incorporation of an organometallic ferrocene unit to produce a novel class of compounds showing in vitro biological activity against breast cancer, malaria and trypanosomiasis.
- Full Text:
- Date Issued: 2020
Ruthenium complexes with mono-or bis-heterocyclic chelates: DNA/BSA binding, Antioxidant and Anticancer studies
- Maikoo, Sanam, Chakraborty, Abir, Vukea, Nyeleti, Dingle, Laura M K, Samson, William J, de la Mare, Jo-Anne, Edkins, Adrienne L, Booysen, Irvin N
- Authors: Maikoo, Sanam , Chakraborty, Abir , Vukea, Nyeleti , Dingle, Laura M K , Samson, William J , de la Mare, Jo-Anne , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165463 , vital:41246 , DOI: 10.1080/07391102.2020.1775126
- Description: Deoxyribonucleic acid (DNA) and bovine serum albumin (BSA) binding interactions for a series of ruthenium heterocyclic complexes were monitored using ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence emission spectroscopy and agarose gel electrophoresis. Investigations of the DNA interactions for the metal complexes revealed that they are groove-binders with intrinsic binding constants in the order of 104 – 107 M−1.
- Full Text:
- Date Issued: 2020
- Authors: Maikoo, Sanam , Chakraborty, Abir , Vukea, Nyeleti , Dingle, Laura M K , Samson, William J , de la Mare, Jo-Anne , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/165463 , vital:41246 , DOI: 10.1080/07391102.2020.1775126
- Description: Deoxyribonucleic acid (DNA) and bovine serum albumin (BSA) binding interactions for a series of ruthenium heterocyclic complexes were monitored using ultraviolet-visible (UV-Vis) spectrophotometry, fluorescence emission spectroscopy and agarose gel electrophoresis. Investigations of the DNA interactions for the metal complexes revealed that they are groove-binders with intrinsic binding constants in the order of 104 – 107 M−1.
- Full Text:
- Date Issued: 2020
The in vitro antiplasmodial and antiproliferative activity of new ferrocene-based α-aminocresols targeting hemozoin inhibition and DNA interaction:
- Mbaba, Mziyanda, Dingle, Laura M K, Swart, Tarryn, Cash, Devon, Laming, Dustin, de la Mare, Jo-Anne, Taylor, Dale, Hoppe, Heinrich C, Biot, Christophe, Edkins, Adrienne L, Khanye, Setshaba D
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
- Authors: Mbaba, Mziyanda , Dingle, Laura M K , Swart, Tarryn , Cash, Devon , Laming, Dustin , de la Mare, Jo-Anne , Taylor, Dale , Hoppe, Heinrich C , Biot, Christophe , Edkins, Adrienne L , Khanye, Setshaba D
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149347 , vital:38827 , https://0-doi.org.wam.seals.ac.za/10.1002/cbic.202000132
- Description: Compounds incorporating ferrocene in a aminocresol scaffold showed antiplasmodial and anticancer activity. SAR studies revealed that an OH group and rotatable C–NH bond are vital for biological activity, with spectrophotometric techniques and docking simulations suggesting a dual mode of action involving hemozoin inhibition and DNA interaction. Targeting multiple pathways could delay the development of clinical resistance.
- Full Text:
- Date Issued: 2020
Anticancer evaluation of ruthenium (III) complexes with N-donor ligands tethered to coumarin or uracil moieties:
- Gramni, Larusha, Vukea, Nyeleti, Chakraborty, Abir, Samson, William J, Dingle, Laura M K, Xulu, Bheki, de la Mare, Jo-Anne, Edkins, Adrienne L, Booysen, Irvin N
- Authors: Gramni, Larusha , Vukea, Nyeleti , Chakraborty, Abir , Samson, William J , Dingle, Laura M K , Xulu, Bheki , de la Mare, Jo-Anne , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163477 , vital:41041 , DOI: 10.1016/j.ica.2019.04.01
- Description: In this study, the synthesis and characterization of new paramagnetic ruthenium(III) complexes: cis-[RuCl2(urdpa)] (1) {Hurdpa = 6-((bis(pyridin-2-ylmethyl)amino)methyl)uracil} and fac-[RuCl3(chrdpa)] (2) {chrdpa = 4-((bis(pyridin-2-ylmethyl)amino)methyl)-7-methoxycoumarin} are reported. These metal complexes have been comprehensively characterized by an array of physicochemical techniques and the X-ray solid-state structures of 1 and Hurdpa have been attained.
- Full Text:
- Date Issued: 2019
- Authors: Gramni, Larusha , Vukea, Nyeleti , Chakraborty, Abir , Samson, William J , Dingle, Laura M K , Xulu, Bheki , de la Mare, Jo-Anne , Edkins, Adrienne L , Booysen, Irvin N
- Date: 2019
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/163477 , vital:41041 , DOI: 10.1016/j.ica.2019.04.01
- Description: In this study, the synthesis and characterization of new paramagnetic ruthenium(III) complexes: cis-[RuCl2(urdpa)] (1) {Hurdpa = 6-((bis(pyridin-2-ylmethyl)amino)methyl)uracil} and fac-[RuCl3(chrdpa)] (2) {chrdpa = 4-((bis(pyridin-2-ylmethyl)amino)methyl)-7-methoxycoumarin} are reported. These metal complexes have been comprehensively characterized by an array of physicochemical techniques and the X-ray solid-state structures of 1 and Hurdpa have been attained.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »