Drowning in data, thirsty for information and starved for understanding: A biodiversity information hub for cooperative environmental monitoring in South Africa
- MacFadyen, Sandra, Allsopp, Nicky, Altwegg, Res, Archibald, Sally, Botha, Judith, Bradshaw, Karen L, Carruthers, Jane, De Klerk, Helen, de Vos, Alta, Distiller, Greg, Foord, Stefan, Freitag-Ronaldson, Stefanie, Gibbs, Richard, Hamer, Michelle, Landi, Pietro, MacFayden, Duncan, Manuel, Jeffrey, Midgley, Guy, Moncrieff, Glenn, Munch, Zahn, Mutanga, Onisimo, Sershen, Nenguda, Rendani, Ngwenya, Mzabalazo, Parker, Daniel M, Peel, Mike, Power, John, Pretorius, Joachim, Ramdhani, Syd, Robertson, Mark P, Rushworth, Ian, Skowno, Andrew, Slingsby, Jasper, Turner, Andrew, Visser, Vernon, van Wageningen, Gerhard, Hui, Cang
- Authors: MacFadyen, Sandra , Allsopp, Nicky , Altwegg, Res , Archibald, Sally , Botha, Judith , Bradshaw, Karen L , Carruthers, Jane , De Klerk, Helen , de Vos, Alta , Distiller, Greg , Foord, Stefan , Freitag-Ronaldson, Stefanie , Gibbs, Richard , Hamer, Michelle , Landi, Pietro , MacFayden, Duncan , Manuel, Jeffrey , Midgley, Guy , Moncrieff, Glenn , Munch, Zahn , Mutanga, Onisimo , Sershen , Nenguda, Rendani , Ngwenya, Mzabalazo , Parker, Daniel M , Peel, Mike , Power, John , Pretorius, Joachim , Ramdhani, Syd , Robertson, Mark P , Rushworth, Ian , Skowno, Andrew , Slingsby, Jasper , Turner, Andrew , Visser, Vernon , van Wageningen, Gerhard , Hui, Cang
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/415624 , vital:71271 , xlink:href="https://doi.org/10.1016/j.biocon.2022.109736"
- Description: The world is firmly cemented in a notitian age (Latin: notitia, meaning data) – drowning in data, yet thirsty for information and the synthesis of knowledge into understanding. As concerns over biodiversity declines escalate, the volume, diversity and speed at which new environmental and ecological data are generated has increased exponentially. Data availability primes the research and discovery engine driving biodiversity conservation. South Africa (SA) is poised to become a world leader in biodiversity conservation. However, continent-wide resource limitations hamper the establishment of inclusive technologies and robust platforms and tools for biodiversity informatics. In this perspectives piece, we bring together the opinions of 37 co-authors from 20 different departments, across 10 SA universities, 7 national and provincial conservation research agencies, and various institutes and private conservation, research and management bodies, to develop a way forward for biodiversity informatics in SA. We propose the development of a SA Biodiversity Informatics Hub and describe the essential components necessary for its design, implementation and sustainability. We emphasise the importance of developing a culture of cooperation, collaboration and interoperability among custodians of biodiversity data to establish operational workflows for data synthesis. However, our biggest challenges are misgivings around data sharing and multidisciplinary collaboration.
- Full Text:
- Date Issued: 2022
- Authors: MacFadyen, Sandra , Allsopp, Nicky , Altwegg, Res , Archibald, Sally , Botha, Judith , Bradshaw, Karen L , Carruthers, Jane , De Klerk, Helen , de Vos, Alta , Distiller, Greg , Foord, Stefan , Freitag-Ronaldson, Stefanie , Gibbs, Richard , Hamer, Michelle , Landi, Pietro , MacFayden, Duncan , Manuel, Jeffrey , Midgley, Guy , Moncrieff, Glenn , Munch, Zahn , Mutanga, Onisimo , Sershen , Nenguda, Rendani , Ngwenya, Mzabalazo , Parker, Daniel M , Peel, Mike , Power, John , Pretorius, Joachim , Ramdhani, Syd , Robertson, Mark P , Rushworth, Ian , Skowno, Andrew , Slingsby, Jasper , Turner, Andrew , Visser, Vernon , van Wageningen, Gerhard , Hui, Cang
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/415624 , vital:71271 , xlink:href="https://doi.org/10.1016/j.biocon.2022.109736"
- Description: The world is firmly cemented in a notitian age (Latin: notitia, meaning data) – drowning in data, yet thirsty for information and the synthesis of knowledge into understanding. As concerns over biodiversity declines escalate, the volume, diversity and speed at which new environmental and ecological data are generated has increased exponentially. Data availability primes the research and discovery engine driving biodiversity conservation. South Africa (SA) is poised to become a world leader in biodiversity conservation. However, continent-wide resource limitations hamper the establishment of inclusive technologies and robust platforms and tools for biodiversity informatics. In this perspectives piece, we bring together the opinions of 37 co-authors from 20 different departments, across 10 SA universities, 7 national and provincial conservation research agencies, and various institutes and private conservation, research and management bodies, to develop a way forward for biodiversity informatics in SA. We propose the development of a SA Biodiversity Informatics Hub and describe the essential components necessary for its design, implementation and sustainability. We emphasise the importance of developing a culture of cooperation, collaboration and interoperability among custodians of biodiversity data to establish operational workflows for data synthesis. However, our biggest challenges are misgivings around data sharing and multidisciplinary collaboration.
- Full Text:
- Date Issued: 2022
Sex demographics alter the effect of habitat structure on predation by a temporary pond specialist
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466968 , vital:76803 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Habitat structure can profoundly influence interaction strengths between predators and prey. Spatio-temporal habitat structure in temporary wetland ecosystems is particularly variable because of fluctuations in water levels and vegetation colonisation dynamics. Demographic characteristics within animal populations may also alter the influence of habitat structure on biotic interactions, but have remained untested. Here, we investigate the influence of vegetation habitat structure on the consumption of larval mosquito prey by the calanoid copepod Lovenula raynerae, a temporary pond specialist. Increased habitat complexity reduced predation, and gravid female copepods were generally more voracious than male copepods in simplified habitats. However, sexes were more similar as habitat complexity increased. Type II functional responses were exhibited by the copepods irrespective of habitat complexity and sex, owing to consistent high prey acquisition at low prey densities. Attack rates by copepods were relatively unaffected by the complexity gradient, whilst handling times lengthened under more complex environments in gravid female copepods. We demonstrate emergent effects of habitat complexity across species demographics, with predation by males more robust to differences in habitat complexity than females. For ecosystems such as temporary ponds where sex-skewed predator ratios develop, our laboratory findings suggest habitat complexity and sex demographics mediate prey risk.
- Full Text:
- Date Issued: 2020
Water volume differentially modifies copepod predatory strengths on two prey types
- Cuthbert, Ross N, Sithagu, Rotondwa, Weyl, Olaf L F, Froneman, P William, Wasserman, Ryan J, Dick, Jaimie T A, Callaghan, Amanda, Foord, Stefan, Dalu, Tatenda
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
- Authors: Cuthbert, Ross N , Sithagu, Rotondwa , Weyl, Olaf L F , Froneman, P William , Wasserman, Ryan J , Dick, Jaimie T A , Callaghan, Amanda , Foord, Stefan , Dalu, Tatenda
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/466979 , vital:76804 , https://doi.org/10.1016/j.limno.2020.125747
- Description: Predatory interaction strengths are highly context-dependent, and in temporary aquatic ecosystems, may be affected by water volume changes. We examine the influence of water volume on Lovenula raynerae (Copepoda) functional responses towards two temporary pond prey types. Daphnia prey risk was not affected by increasing water volume, whereas for Culex prey risk was reduced. Accordingly, water volume changes through the hydroperiod may have species-specific effects on prey, with implications for population persistence under environmental change.
- Full Text:
- Date Issued: 2020
- «
- ‹
- 1
- ›
- »