Improvement of nonlinear optical properties of phthalocyanine bearing diethyleneglycole chains
- Britton, Jonathan, Martynov, Alexander G, Oluwole, David O, Gorbunova, Yulia G, Tsivadze, Yulia G, Nyokong, Tebello
- Authors: Britton, Jonathan , Martynov, Alexander G , Oluwole, David O , Gorbunova, Yulia G , Tsivadze, Yulia G , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239812 , vital:50769 , xlink:href="https://doi.org/10.1142/S1088424616501042"
- Description: This paper reports the successful synthesis of the low symmetry phthalocyanines: metal-free 2,3-bis[2′-(2′′-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-nn-butoxyphthalocyanine 1H22 and its zinc complex 1Zn along with their nonlinear optical (NLO) behavior in solution and in thin films. 1H NMR investigations evidenced of higher dissymmetry of electronic density in 1H22 in comparison with 1Zn. This dissymmetry is responsible for unusually higher values of Im[χ(3)χ(3)]/αα, βeffβeff, and γγ for 1H22in contrast to 1Zn, where the notable effect of heavy-metal enhancement of ISC was expected. Both compounds showed Im[χ(3)χ(3)]/αα values of the order of 10−11−11 in chloroform which are higher in comparison to the symmetrical octabutoxyphthalocyanine H2[(BuO)8Pc]. NLO properties of 1H22 were improved via its incorporation into polycarbonate polymeric matrix together with CdSe@CdS-TOPO quantum dots. In such composite the value of Im[χ(3)χ(3)]/αα was almost three times higher in comparison with 1H22 solution in chloroform. The obtained composites are expected to be perspective components of optical materials, capable of protection against strong light irradiation
- Full Text:
- Date Issued: 2016
- Authors: Britton, Jonathan , Martynov, Alexander G , Oluwole, David O , Gorbunova, Yulia G , Tsivadze, Yulia G , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/239812 , vital:50769 , xlink:href="https://doi.org/10.1142/S1088424616501042"
- Description: This paper reports the successful synthesis of the low symmetry phthalocyanines: metal-free 2,3-bis[2′-(2′′-hydroxyethoxy)ethoxy]-9,10,16,17,23,24-hexa-nn-butoxyphthalocyanine 1H22 and its zinc complex 1Zn along with their nonlinear optical (NLO) behavior in solution and in thin films. 1H NMR investigations evidenced of higher dissymmetry of electronic density in 1H22 in comparison with 1Zn. This dissymmetry is responsible for unusually higher values of Im[χ(3)χ(3)]/αα, βeffβeff, and γγ for 1H22in contrast to 1Zn, where the notable effect of heavy-metal enhancement of ISC was expected. Both compounds showed Im[χ(3)χ(3)]/αα values of the order of 10−11−11 in chloroform which are higher in comparison to the symmetrical octabutoxyphthalocyanine H2[(BuO)8Pc]. NLO properties of 1H22 were improved via its incorporation into polycarbonate polymeric matrix together with CdSe@CdS-TOPO quantum dots. In such composite the value of Im[χ(3)χ(3)]/αα was almost three times higher in comparison with 1H22 solution in chloroform. The obtained composites are expected to be perspective components of optical materials, capable of protection against strong light irradiation
- Full Text:
- Date Issued: 2016
MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine
- Mack, John, Mkhize, Scebi, Safonoya, Evgeniya A, Gorbunova, Yulia G, Tsivadze, Aslan Yu, Nyokong, Tebello
- Authors: Mack, John , Mkhize, Scebi , Safonoya, Evgeniya A , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240743 , vital:50867 , xlink:href="https://doi.org/10.1142/S1088424616500322"
- Description: An analysis of the MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine is reported. This study provides a reassessment of an earlier study on the nature of the bands in UV-visible absorption spectra of magnesium and zinc tetra-(15-crown-5-oxanthreno)-phthalocyanine that was based on an analysis of TD-DFT calculations for a series of model complexes with the B3LYP functional. A detailed analysis of MCD spectral data and TD-DFT calculations with the CAM-B3LYP functional for the complete Mg(II) complex provides an additional insight into the optical properties and electronic structures of tetra-(15-crown-5-oxanthreno)-phthalocyanines. Thus, the bands in the Q-band region are reassigned as being due exclusively to the Q transition of Gouterman’s 4-orbital model, since intense pseudo-A1𝒜1 terms are observed in the MCD spectrum in a spectral region that had previously been assigned as charge transfer bands.
- Full Text:
- Date Issued: 2016
- Authors: Mack, John , Mkhize, Scebi , Safonoya, Evgeniya A , Gorbunova, Yulia G , Tsivadze, Aslan Yu , Nyokong, Tebello
- Date: 2016
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/240743 , vital:50867 , xlink:href="https://doi.org/10.1142/S1088424616500322"
- Description: An analysis of the MCD spectroscopy and TD-DFT calculations of magnesium tetra-(15-crown-5-oxanthreno)-phthalocyanine is reported. This study provides a reassessment of an earlier study on the nature of the bands in UV-visible absorption spectra of magnesium and zinc tetra-(15-crown-5-oxanthreno)-phthalocyanine that was based on an analysis of TD-DFT calculations for a series of model complexes with the B3LYP functional. A detailed analysis of MCD spectral data and TD-DFT calculations with the CAM-B3LYP functional for the complete Mg(II) complex provides an additional insight into the optical properties and electronic structures of tetra-(15-crown-5-oxanthreno)-phthalocyanines. Thus, the bands in the Q-band region are reassigned as being due exclusively to the Q transition of Gouterman’s 4-orbital model, since intense pseudo-A1𝒜1 terms are observed in the MCD spectrum in a spectral region that had previously been assigned as charge transfer bands.
- Full Text:
- Date Issued: 2016
- «
- ‹
- 1
- ›
- »