The potential of Raman spectroscopy in distinguishing between wool and mohair fibres
- Authors: Notayi, Mzwamadoda
- Date: 2020
- Subjects: Textile fabrics , Textile fibers -- Mechanical properties Wool -- Dissertations Mohair -- Dissertations
- Language: English
- Type: Thesis , Doctoral , DPhil
- Identifier: http://hdl.handle.net/10948/49248 , vital:41614
- Description: The possible application of the FT Raman, Raman micro-spectroscopy and ATR-FTIR micro-spectroscopy, have been investigated for distinguishing between wool and mohair. Highly identical Raman and FTIR spectra were obtained from the two fibre types, indicating that indeed they share similar basic molecular structural chemistry. The analysis of the amide I through curve fitting of wool and mohair FT Raman spectra showed that the protein and polypeptide secondary structure exists mainly in the α-helical structural conformation with smaller proportions of β-pleated sheet and β-Turns. These proportions, however, could not be used to distinguish between wool and mohair, due to the significant overlap observed between the two fibres. This study also determined the disulphide contents for possibly distinguishing between wool and mohair fibres, with the average and standard deviation values of 0.20±0.04 and 0.17±0.03 for wool and mohair, respectively, being found. Despite the mean values being found to differ statistically significant (p<0.05), a considerable overlap was observed, posing a doubt in the possible application of the method for distinguishing between the two fibres and blend composition analysis of the two fibres. The application of ratiometric analysis, based on the relative peak heights of certain FT Raman bands, showed that a combination of ratios A (I2932/I1450) and D (I508/I1450) could hold great potential in distinguishing between wool and mohair fibre samples. The individual values of ratios A and D varied a great deal from one mohair sample to the other and even more from one wool sample to another, with the individual values for ratio A ranging from 2.71-3.68 and 2.35-3.08 for wool and mohair, respectively, while ratio D ranged from 0.18-0.32 and 0.17-0.22 for wool and mohair, respectively. An important observation from this study is that if, for an unknown sample, if individual values of ratios A and D exceed 3.1 and 0.22, respectively, are found then the sample is most likely to be either a pure wool or blend of wool and mohair, whereas if all the values fall below the two threshold values, then the unknown sample can be declared a pure mohair sample. A Raman spectral database or library of approximately 100 high quality Raman average spectra of wool and mohair fibres has been established for the Bruker 80V FTIR/Raman spectrophotometer at the Nelson Mandela University (NMU). Although this has not been fully validated due to the unforeseen frequent breakdown encountered with the FT Raman system, at this stage, it has been realized that verification of unknown materials is highly possible. A great need for the development of a classification model based on multivariate or chemometrics has been realized. An ATR-FTIR LUMOS micro-spectroscopic system was also investigated for the possible application in distinguishing between wool and mohair single fibres. The amide I/II band ratios were determined for both wool and mohair fibres to distinguish between the two fibre types. The mean and standard deviation values of 1.20±0.02 and 1.21±0.01 for mohair and wool, respectively, were found and were shown not to differ statistically significant (p˃0.05). The secondary structure analysis showed that the content of the α-helical secondary structure might be different between the two fibre types, with a great overlap of individual values, however, being observed between the two fibre types (wool and mohair), raising concerns in the possible application of the α-helical content for distinguishing the two fibres.
- Full Text:
- Date Issued: 2020
Characterization of animal fibres
- Authors: Notayi, Mzwamadoda
- Date: 2014
- Subjects: Animal fibres , Textile fabrics , Animal science
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10552 , http://hdl.handle.net/10948/d1020426
- Description: Identification of fibres, particularly in blends, requires knowledge of their characteristics. Individual Identifying features between wool and mohair fibres were investigated in this study using a Scanning Electron Microscope (SEM), Fourier Transform Infrared-Attenuated Total Reflection (FTIR-ATR), Fourier Transform Raman and Atomic Force Microscope (AFM). This study confirmed that wool and mohair can be differentiated and identified in blends using the cuticle scale height (CSH) criterion, wool having an average CSH of 0.6 ± 0.1 μm and mohair having an average CSH of 0.4 ± 0.1 μm. The AFM provided highly reproducible CSH results, which also confirmed the SEM results that indeed wool and mohair could be differentiated using the CSH as criterion. The AFM gave a CSH value of 0.9 ± 0.2 μm for wool and 0.6 ± 0.2 μm for mohair, the difference between the two results being statistically significant according to the student t-test. It has been demonstrated that wool and mohair identification in blends is possible, by using the AFM to measure CSH, although the method is very time consuming and might be expensive. The FTIR-ATR showed similar spectra for wool and mohair fibres, confirming that the two fibre types consist of the same polymer material. Nevertheless, a difference was observed in the ratios of the relative intensities of the amide I (around 1630 cm-1) to the amide II (around 1515cm-1) absorption bands. The FT Raman provided similar spectra for the wool and mohair fibres, although a possible distinguishing feature between the two fibres could be the intensities of the alkyl side chains chemical band near 2940 cm-1 in the spectra of the two fibre types. According to the results obtained in this study, the FTIR-ATR and the FT Raman techniques may have potential for differentiating between wool and mohair but this requires further investigation.
- Full Text:
- Date Issued: 2014