Field-based ecological studies to assess prospective biological control agents for invasive alien plants: An example from giant rat's tail grass
- Sutton, Guy F, Canavan, Kim N, Day, Michael M, Paterson, Iain D
- Authors: Sutton, Guy F , Canavan, Kim N , Day, Michael M , Paterson, Iain D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423756 , vital:72091 , xlink:href="https://doi.org/10.1111/1365-2664.13834"
- Description: Biological control (biocontrol) of invasive alien plants is a widely utilised weed management tool. Prospective biocontrol agents are typically assessed through host specificity testing and pre-release efficacy studies performed in quarantine. However, rearing of the potential biocontrol agents and/or test plants is often difficult or impossible under quarantine conditions. Moreover, practitioners may attain laboratory artefacts in quarantine, which may result in the potential agent being needlessly rejected. Field-based studies in the weed's indigenous distribution could overcome these issues.
- Full Text:
- Date Issued: 2021
- Authors: Sutton, Guy F , Canavan, Kim N , Day, Michael M , Paterson, Iain D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423756 , vital:72091 , xlink:href="https://doi.org/10.1111/1365-2664.13834"
- Description: Biological control (biocontrol) of invasive alien plants is a widely utilised weed management tool. Prospective biocontrol agents are typically assessed through host specificity testing and pre-release efficacy studies performed in quarantine. However, rearing of the potential biocontrol agents and/or test plants is often difficult or impossible under quarantine conditions. Moreover, practitioners may attain laboratory artefacts in quarantine, which may result in the potential agent being needlessly rejected. Field-based studies in the weed's indigenous distribution could overcome these issues.
- Full Text:
- Date Issued: 2021
Prioritisation of targets for weed biological control I: a review of existing prioritisation schemes and development of a system for South Africa
- Downey, Paul O, Paterson, Iain D, Canavan, Kim N, Hill, Martin P
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
The potential for biological control on cryptic plant invasions
- Canavan, Kim N, Canavan, Susan, Harms, Nathan E, Lambertini, Carla, Paterson, Iain D, Thum, Ryan
- Authors: Canavan, Kim N , Canavan, Susan , Harms, Nathan E , Lambertini, Carla , Paterson, Iain D , Thum, Ryan
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423562 , vital:72072 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104243"
- Description: Cryptic invasions can be defined as ‘the occurrence of an invasive species or genotype that was not previously recognised as alien in origin or not distinguished from other aliens’. Such invasions can result in negative impacts on the recipient ecosystems and disturb the evolutionary history of native plant populations. Many cryptic invasions have become so problematic that there is a need to implement control measures. This paper explores the potential for biological control to be implemented as a means of managing cryptic invasions. Firstly, the paper defines the different forms of cryptic invasion, differentiating between interspecific and intraspecific invasions; this hierarchy influences how to detect, study and ultimately implement biological control when cryptic invasions occur. Secondly, unique challenges associated with biological control programmes for cryptic invasions are addressed, including: the need for intraspecific level host specificity in agents, the occurrence of hybridisation between native species/lineages and the target weed, the role of enemy release in cryptic invasions in the presence of closely related native plant species/lineages, and a review of potential stakeholder conflicts of interest and legislation. Biological control of cryptic invasions has been shown to be possible, however the process will be more difficult and complex than controlling traditional targets and will likely take up more time and resources. If these challenges are overcome, then biological control programmes against cryptic invasions should be able to proceed and maintain the same standards as traditional biological control programmes.
- Full Text:
- Date Issued: 2020
- Authors: Canavan, Kim N , Canavan, Susan , Harms, Nathan E , Lambertini, Carla , Paterson, Iain D , Thum, Ryan
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423562 , vital:72072 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104243"
- Description: Cryptic invasions can be defined as ‘the occurrence of an invasive species or genotype that was not previously recognised as alien in origin or not distinguished from other aliens’. Such invasions can result in negative impacts on the recipient ecosystems and disturb the evolutionary history of native plant populations. Many cryptic invasions have become so problematic that there is a need to implement control measures. This paper explores the potential for biological control to be implemented as a means of managing cryptic invasions. Firstly, the paper defines the different forms of cryptic invasion, differentiating between interspecific and intraspecific invasions; this hierarchy influences how to detect, study and ultimately implement biological control when cryptic invasions occur. Secondly, unique challenges associated with biological control programmes for cryptic invasions are addressed, including: the need for intraspecific level host specificity in agents, the occurrence of hybridisation between native species/lineages and the target weed, the role of enemy release in cryptic invasions in the presence of closely related native plant species/lineages, and a review of potential stakeholder conflicts of interest and legislation. Biological control of cryptic invasions has been shown to be possible, however the process will be more difficult and complex than controlling traditional targets and will likely take up more time and resources. If these challenges are overcome, then biological control programmes against cryptic invasions should be able to proceed and maintain the same standards as traditional biological control programmes.
- Full Text:
- Date Issued: 2020
Effect of water trophic level on the impact of the water hyacinth moth Niphograpta albiguttalis on Eichhornia crassipes
- Canavan, Kim N, Coetzee, Julie A, Hill, Martin P, Paterson, Iain D
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
- Authors: Canavan, Kim N , Coetzee, Julie A , Hill, Martin P , Paterson, Iain D
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423740 , vital:72090 , xlink:href="https://doi.org/10.2989/16085914.2014.893225"
- Description: Eutrophication contributes to the proliferation of alien invasive weed species such as water hyacinth Eichhornia crassipes. Although the South American moth Niphograpta albiguttalis was released in South Africa in 1990 as a biological control agent against water hyacinth, no post-release evaluations have yet been conducted here. The impact of N. albiguttalis on water hyacinth growth was quantified under low-, medium- and high-nutrient concentrations in a greenhouse experiment. Niphograpta albiguttalis was damaging to water hyacinth in all three nutrient treatments, but significant damage in most plant parameters was found only under high-nutrient treatments. However, E. crassipes plants grown in high-nutrient water were healthier, and presumably had higher fitness, than plants not exposed to herbivory at lower-nutrient levels. Niphograpta albiguttalis is likely to be most damaging to water hyacinth in eutrophic water systems, but the damage will not result in acceptable levels of control because of the plant's high productivity under these conditions. Niphograpta albiguttalis is a suitable agent for controlling water hyacinth infestations in eutrophic water systems, but should be used in combination with other biological control agents and included in an integrated management plan also involving herbicidal control and water quality management.
- Full Text:
- Date Issued: 2014
The herbivorous arthropods associated with the invasive alien plant, Arundo donax, and the native analogous plant, Phragmites australis, in the Free State Province, South Africa s
- Canavan, Kim N, Paterson, Iain D, Hill, Martin P
- Authors: Canavan, Kim N , Paterson, Iain D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406155 , vital:70243 , xlink:href="https://hdl.handle.net/10520/EJC155690"
- Description: The Enemy Release Hypothesis (ERH) predicts that when plant species are introduced outside their native range there is a release from natural enemies resulting in the plants becoming problematic invasive alien species (Lake and Leishman 2004; Puliafico et al. 2008). The release from natural enemies may benefit alien plants more than simply reducing herbivory because, according to the Evolution of Increased Competitive Ability (EICA) hypothesis, without pressure from herbivores more resources that were previously allocated to defence can be allocated to reproduction (Blossey and Notzold 1995). Alien invasive plants are therefore expected to have simpler herbivore communities with fewer specialist herbivores (Frenzel and Brandl 2003; Heleno et al. 2008; Heger and Jeschke 2014).
- Full Text:
- Date Issued: 2014
- Authors: Canavan, Kim N , Paterson, Iain D , Hill, Martin P
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/406155 , vital:70243 , xlink:href="https://hdl.handle.net/10520/EJC155690"
- Description: The Enemy Release Hypothesis (ERH) predicts that when plant species are introduced outside their native range there is a release from natural enemies resulting in the plants becoming problematic invasive alien species (Lake and Leishman 2004; Puliafico et al. 2008). The release from natural enemies may benefit alien plants more than simply reducing herbivory because, according to the Evolution of Increased Competitive Ability (EICA) hypothesis, without pressure from herbivores more resources that were previously allocated to defence can be allocated to reproduction (Blossey and Notzold 1995). Alien invasive plants are therefore expected to have simpler herbivore communities with fewer specialist herbivores (Frenzel and Brandl 2003; Heleno et al. 2008; Heger and Jeschke 2014).
- Full Text:
- Date Issued: 2014
- «
- ‹
- 1
- ›
- »