Host-specificity testing of the leaf-feeding flea beetle, Phenrica guerini, a biological control agent for the invasive alien cactus, Pereskia aculeata
- Authors: Dixon, Elizabeth , Paterson, Iain D , Muskett, Phillippa C , McConnachie, Andrew
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417687 , vital:71478 , xlink:href="https://doi.org/10.1080/09583157.2023.2214342"
- Description: Pereskia aculeata Miller (Cactaceae) is an environmentally damaging invasive alien plant in South Africa and Australia. The flea-beetle, Phenrica guerini Bechyné (Coleoptera: Chrysomelidae), has been used in South Africa as a biological control agent against the plant for more than 30 years but updated host-specificity testing was required to determine its suitability as an agent in Australia. No-choice larval survival tests were conducted on 26 test plant species from 11 families, with survival to the adult stage only being recorded on the target weed, P. aculeata. No-choice oviposition testing with adult P. guerini was conducted on six test plant species. No adult feeding was recorded on any test plants and significantly more eggs were oviposited on P. aculeata (158.8 SE ± 21.4) than on Talinum caffrum (5.2 SE ± 5.2), which was the only test plant on which they oviposited. The adults survived on average 27 days longer on P. aculeata than on any test plant species. In a multiple-choice trial that included all three species that supported any larval feeding as well as P. aculeata, oviposition and feeding was only recorded on target weed. Phenrica guerini is suitably host specific for consideration in Australia as a biological control agent against P. aculeata.
- Full Text:
- Date Issued: 2023
Know thy enemy: Investigating genetic contributions from putative parents of invasive Nymphaea mexicana hybrids in South Africa as part of efforts to develop biological control
- Authors: Reid, Megan K , Paterson, Iain D , Coetzee, Julie A , Gettys, Lyn A , Hill, Martin P
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423540 , vital:72070 , xlink:href="https://doi.org/10.1016/j.biocontrol.2023.105291"
- Description: Hybridisation of alien invasive plants complicates efforts to develop biological control, because variations in the genetic makeup of the target plant can impact the survival of host specific agents that have evolved adaptations specific to the original host. To maximise the likelihood of success in a biological control program, potential agents should therefore be collected from populations in the region of origin that are genetically similar to plants in the invaded range. Molecular markers are useful tools to understand genetic contributions in hybrid populations, especially where morphological differentiation is difficult. Nymphaea mexicana Zuccarini (Nymphaeaceae) is an invasive alien plant in South Africa that is being targeted for biological control, but hybrids with intermediate morphological traits are also present at several sites. In this study, ISSR (inter simple sequence repeats) and ITS (internal transcribed spacer) markers were used to determine which Nymphaea species are likely to be putative parents of these hybrids, and morphological characters were also investigated to determine if genetic and morphological traits matched. Two major hybrid groups were identified, with one group clustering with Nymphaea odorata Aiton and the other clustering with Nymphaea alba L. A third, smaller group clustered with Nymphaea tetragona Georgi, whereas the remaining samples clustered with pure N. mexicana from the native range. Morphological features agreed with deductions drawn from molecular data. These results allow us to focus efforts to find compatible biological control agents and better understand the complicated genetic structure of N. mexicana and Nymphaea hybrids in South Africa.
- Full Text:
- Date Issued: 2023
Addressing the red flags in cochineal identification: The use of molecular techniques to identify cochineal insects that are used as biological control agents for invasive alien cacti
- Authors: van Steenderen, Clarke J M , Paterson, Iain D , Edwards, Shelley , Day, Michael D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423282 , vital:72044 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104426"
- Description: Invasive Cactaceae cause considerable damage to ecosystem function and agricultural practices around the world. The most successful biological control agents used to combat this group of weeds belong to the genus Dactylopius (Hemiptera: Dactylopiidae), commonly known as ‘cochineal’. Effective control relies on selecting the correct species, or in some cases, the most effective intraspecific lineage, of cochineal for the target cactus species. Many of the Dactylopius species are so morphologically similar, and in the case of intraspecific lineages, identical, that numerous misidentifications have been made in the past. These errors have resulted in failed attempts at the biological control of some cactus species. This study aimed to generate a multi-locus genetic database to enable the accurate identification of dactylopiids. Genetic characterization was achieved through the nucleotide sequencing of three gene regions (12S rRNA, 18S rRNA, and COI) and two inter-simple sequence repeats (ISSR). Nucleotide sequences were very effective for species-level and D. tomentosus lineage-level identification, but could not distinguish between the two lineages within D. opuntiae commonly used for biological control of various Opuntia spp. Fragment analysis through the use of ISSRs successfully addressed this issue. This is the first time that a method has been developed that can distinguish between these two D. opuntiae lineages. Using the methods developed in this study, biological control practitioners can ensure that the most effective agent species and lineages are used for each cactus target weed, thus maximizing the level of control.
- Full Text:
- Date Issued: 2021
An introduction to the fourth decadal review of biological control of invasive alien plants in South Africa (2011–2020)
- Authors: Paterson, Iain D , den Breeyen, Alana , Martin, Grant D , Olckers, Tamryn
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/413387 , vital:71031 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a2"
- Description: This special issue is the fourth decadal review of biological control of invasive alien plants (biocontrol of weeds) in South Africa, following those published in 1991, 1999 and 2011. Including this introduction, there are 24 papers covering the weed biocontrol programmes, or important developments in the science and practice, from the period 2011-2020. Seventy-two target weed species are covered, including 25 species on which projects were initiated during the past decade. Developments in regulations, mass-rearing and implementation, and community engagement are also reviewed. An updated catalogue of agents released, rejected and under consideration is presented and reflects the most recent methods of quantifying success in weed biocontrol. Key events over the last decade include the hosting of the XIV International Symposium on Biological Control of Weeds to celebrate 100 years of weed biocontrol in South Africa, as well as the establishment of the Centre for Biological Control at Rhodes University. The science and practice of weed biocontrol has expanded significantly in the past decade, with growth in the number of researchers and practitioners, increased funding, and an increased number of scholarly outputs. Unlike many other countries in the world, South Africa has largely avoided constraints due to restrictive and risk averse legislation and bureaucracy, and has continued to release new biocontrol agents at a similar rate to that in previous years. Much of the success of weed biocontrol in South Africa is due to the sustained and increasing support of the Natural Resource Management Programme of the Department of Forestry, Fisheries and the Environment (Working for Water Programme). However, gaps in funding, where no funds are available for months at a time, are a major concern as the weed biocontrol community loses human capital in these periods, and research programmes suffer significant set-backs. Weed biocontrol is an essential component of South Africa’s strategy to reduce the negative impacts of invasive alien plants and has contributed significantly towards the protection of the country’s ecosystems, indigenous biodiversity, water security, agricultural productivity, and society in general. If the trend of increasing support for weed biocontrol in South Africa continues, we can expect that the benefits for the country at large will increase substantially in the future.
- Full Text:
- Date Issued: 2021
Biological control of cactaceae in South Africa
- Authors: Paterson, Iain D , Klein, Hildegard , Muskett, Phillippa C , Griffith, Tamzin C , Mayonde, Samalesu , Mofokeng, Kedibone , Mnqeta, Zezethu , Venter, Nic
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/${Handle} , vital:71034 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a4"
- Description: Cactaceae are among the most problematic invasive alien plants in South Africa, posing serious negative consequences to agriculture and natural ecosystems. Fortunately, South Africa has a long and successful history of controlling cactus weeds using biological control (biocontrol). This paper reviews all the biocontrol programmes against invasive alien Cactaceae in South Africa, focusing on the decade since the last review published in 2011, up to, and including 2020. Biocontrol programmes against 16 target weeds are summarised, all of which rely on either the galling mealybug, Hypogeococcus sp. (Pseudococcidae), or various species or intraspecific lineages of cochineal insects (Dactylopius spp., Dactylopiidae) as agents. New agents are being considered for the three target weed species, Opuntia elata Salm-Dyck, Opuntia megapotamica Arechav. and Trichocereus spachianus (Lem.) Riccob., while permission to release a new agent against Cylindropuntia pallida (Rose) F.M. Knuth has recently been granted. The biocontrol agent, Dactylopius opuntiae (Cockrell) ‘stricta’, which has been utilised for the successful control of Opuntia stricta Haw., has shown some promise as an agent against one of the worst cactus weeds in the country, the North Cape/Free State variety of Opuntia engelmannii Salm-Dyck. Post-release monitoring and recent observations of the status of control for the 11 other cactus weeds, all of which have well-established agents, are provided. Taxonomic uncertainties and misidentifications of both target weeds and agents has been a constraint to biocontrol efforts, but this has been partially overcome through the use of genetic techniques. Biocontrol is particularly successful in controlling cactus weeds compared to most other taxonomic groups, and it is likely that past successes can be repeated with new target weeds. Mass-rearing and redistribution of agents are essential to gain the maximum possible benefit from cactus biocontrol agents, and recent increases in mass-rearing outputs have been beneficial.
- Full Text:
- Date Issued: 2021
Biological control of invasive climbing plants in South Africa
- Authors: King, Anthony M , Paterson, Iain D , Simelane, David O , Mawela, Khethani V , Mngeta, Zezethu , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/413471 , vital:71041 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a17"
- Description: Vines and other climbing plants typically invest their resources into growth at the expense of accumulating self-supporting biomass. Adaptive traits that have arisen because of the life history needs of climbing species, such as rapid and extensive growth, as well as resilience to physical damage, make these plants highly competitive. Introduced climbing species therefore have the potential to be particularly damaging in novel ranges where they escape pressure from natural enemies. In South Africa, invasive climbing species negatively influence biodiversity and plant-community structure, and as conventional management is often difficult, biological control (biocontrol) is viewed as the only viable long-term control method. This paper consolidates the work done on biocontrol programmes against climbing species in South Africa, including Anredera cordifolia (Ten.) Steenis (Basellaceae), Cardiospermum grandiflorum Sw. (Sapindaceae), Dolichandra unguis-cati (L.) L.G.Lohmann (Bignoniaceae) and Pereskia aculeata Miller (Cactaceae). To date, these programmes have investigated some 27 potential biocontrol agents, of which nine have been approved for release in the country. Since 2010, three new agents have been introduced, and considerable progress made with post-release evaluations of all the introduced agents. Some positive results have been achieved, most notably the successful reduction in seed set of C. grandiflorum due to Cissanthonomus tuberculipennis Hustache (Curculionidae), but considerable variation in efficacy over time and between infestations has been recorded for many of the other agents. Further work may help explain the factors limiting success, leading to improved control, but in some cases, such as for A. cordifolia, new biocontrol agents should be considered.
- Full Text:
- Date Issued: 2021
Biological control of South African plants that are invasive elsewhere in the world: A review of earlier and current programmes
- Authors: Olckers, Terence , Coetzee, Julie A , Egli, Daniella , Martin, Grant D , Paterson, Iain D , Sutton, Guy F , Wood, Alan R
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/414336 , vital:71137 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a21"
- Description: South Africa supports a rich floral diversity, with 21 643 native plant taxa that include a high proportion (76.3%) of endemic species, and many of these favoured as ornamentals, both locally and globally. Consequently, South Africa has contributed substantially to global plant invasions, with 1093 native taxa (5% of all species) naturalized in other countries. At least 80 taxa are invasive in natural or semi-natural ecosystems elsewhere, while an additional 132 taxa are potentially invasive. Of the global naturalized flora, 8.2% originate from South Africa and largely comprise species of Poaceae, Asteraceae, Iridaceae and Fabaceae. Australia, in particular, but also Europe and North America are major recipients of South African weeds. However, few countries have targeted South African plants for biological control (biocontrol), with most efforts undertaken by Australia. Previous and current targets have involved only 26 species with 17 agents (15 insects, one mite and one rust fungus) of South African origin released on five target species in Australia and the United States of America. South Africa’s history of weed biocontrol, together with a large cohort of active scientists, is currently facilitating several internationally funded programmes targeting invasive plants of South African origin. In particular, the recently inaugurated Centre for Biological Control at Rhodes University and the University of KwaZulu-Natal have provided the impetus for novel efforts on five new target species and renewed efforts on four previously targeted species. In this contribution, we review the history of earlier biocontrol programmes against weeds of South African origin and the status of projects currently in progress in South Africa.
- Full Text:
- Date Issued: 2021
Field-based ecological studies to assess prospective biological control agents for invasive alien plants: An example from giant rat's tail grass
- Authors: Sutton, Guy F , Canavan, Kim N , Day, Michael M , Paterson, Iain D
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423756 , vital:72091 , xlink:href="https://doi.org/10.1111/1365-2664.13834"
- Description: Biological control (biocontrol) of invasive alien plants is a widely utilised weed management tool. Prospective biocontrol agents are typically assessed through host specificity testing and pre-release efficacy studies performed in quarantine. However, rearing of the potential biocontrol agents and/or test plants is often difficult or impossible under quarantine conditions. Moreover, practitioners may attain laboratory artefacts in quarantine, which may result in the potential agent being needlessly rejected. Field-based studies in the weed's indigenous distribution could overcome these issues.
- Full Text:
- Date Issued: 2021
Population genetics of invasive and native Nymphaea mexicana Zuccarini: Taking the first steps to initiate a biological control programme in South Africa
- Authors: Reid, Megan K , Naidu, Prinavin , Paterson, Iain D , Mangan, Rosie , Coetzee, Julie A
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/419375 , vital:71638 , xlink:href="https://doi.org/10.1016/j.aquabot.2021.103372"
- Description: Nymphaea mexicana Zuccarini (Nympheaceae) (Mexican waterlily) is a rooted floating-leaved aquatic plant native to southern USA and Mexico that has become a problematic invasive alien plant in South Africa. Biological control is considered a desirable management strategy for the plant in South Africa. A good understanding of the genetic structure of invasive populations has been useful in other biological control programmes because taxonomic uncertainty about the target plant can result in natural enemies that are not adapted to the invasive populations being considered as potential agents. For N. mexicana, hybrids exist in the wild and horticultural trade, but identification is difficult, so understanding the genetic structure of populations is required to ensure that potential agents are collected off plants similar to invasive populations in South Africa. ISSR (inter-simple sequence repeats) analysis was used to determine whether invasive N. mexicana populations from South Africa were genetically similar to native range populations from USA or whether they were hybrids. Results from these analyses were matched with the morphotypes of each population based on petal colour, shape, and size. The genotypes suggested by the ISSR analyses corroborated the presence of both hybrid and pure forms of N. mexicana in South Africa. Populations of N. mexicana in the invaded range that are genetically similar to native range populations are more likely to be suitable for biological control, while other populations are likely to be hybrids formed by crossing of parents from the native range or within the horticultural trade, which may present difficulties for management using biocontrol.
- Full Text:
- Date Issued: 2021
Prioritisation of targets for weed biological control I: a review of existing prioritisation schemes and development of a system for South Africa
- Authors: Downey, Paul O , Paterson, Iain D , Canavan, Kim N , Hill, Martin P
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417763 , vital:71484 , xlink:href="https://doi.org/10.1080/09583157.2021.1918636"
- Description: Biological control is widely utilised for the management of invasive alien plants (IAP). With the ever-increasing number of IAPs, it is important to prioritise targets for biocontrol in order to maximise the use of resources and the chances of success. This paper reviewed 12 previous systems developed to prioritise plant targets for biocontrol. The review underpins the selection of attributes and methodologies for the prioritisation of targets for biocontrol in South Africa. All of the previous systems are purpose-built and context-specific, so a new system is required for the South African setting. Previous prioritisation systems were assessed based on the attributes and methodology adopted. The attributes of previous systems were grouped into three sections, being (1) impact/importance of the target plant, (2) likelihood of achieving success, and (3) investment required. Nineteen attributes from previous systems are included in the new system, while nine were excluded due to a requirement for legislation and/or research, or because they conflicted with objectives of the new system in some way. Two methodological approaches were identified for how systems sourced information, either sourcing information through expert knowledge or the use of available literature and data. This information was then applied through either a quantitative or qualitative scoring method. A quantitative scoring method, with information sourced from available resources, was selected as the most appropriate methodology in the context of the new system for South Africa. This review streamlined the development and testing of the South African Biological Control Target Selection system.
- Full Text:
- Date Issued: 2021
The role of mass-rearing in weed biological control projects in South Africa
- Authors: Hill, Martin P , Conlong, Desmond , Zachariades, Costas , Coetzee, Julie A , Paterson, Iain D , Miller, Benjamin E , Foxcroft, Llewellyn , Van der Westhuizen, Liamé
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407094 , vital:70335 , xlink:href="https://hdl.handle.net/10520/ejc-ento_v29_n3_a22"
- Description: It has been documented that the continual release of high numbers of biological control (biocontrol) agents for weeds increases the likelihood of agent establishment and has been shown to reduce the time between the first release and subsequent control of the target weed. Here we review the mass-rearing activities for weed biocontrol agents in South Africa between 2011 and 2020. Some 4.7 million individual insects from 40 species of biocontrol agent have been released on 31 weed species at over 2000 sites throughout South Africa during the last decade. These insects were produced at mass-rearing facilities at eight research institutions, five schools and 10 Non-Governmental Organizations. These mass-rearing activities have created employment for 41 fulltime, fixed contract staff, of which 11 are people living with physical disabilities. To improve the uptake of mass-rearing through community engagement, appropriate protocols are required to ensure that agents are produced in high numbers to suppress invasive alien plant populations in South Africa.
- Full Text:
- Date Issued: 2021
Climate modelling suggests a review of the legal status of Brazilian pepper Schinus terebinthifolia in South Africa is required:
- Authors: Martin, Grant D , Magengelele, Nwabisa L , Paterson, Iain D , Sutton, Guy F
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148606 , vital:38754 , https://doi.org/10.1016/j.sajb.2020.04.019
- Description: Brazilian pepper (Schinus terebinthifolia) is a tree native to subtropical South America that was introduced into South Africa in the early 1900s as an ornamental plant. The tree has since escaped cultivation and has invaded ruderal and pristine habitats along the eastern coast of South Africa. Brazilian Pepper is also one of the most problematic invasive alien plants in Florida, USA. We modelled the climatically suitable area for this species in South Africa using MaxEnt, with five distinct datasets: incorporating both the native and the invaded range of the species, as well as different backgrounds.
- Full Text:
- Date Issued: 2020
Ground-truthing climate-matching predictions in a post-release evaluation
- Authors: Muskett, Phillippa C , Paterson, Iain D , Coetzee, Julie A
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423504 , vital:72067 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104217"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien cactus which has negative impacts on indigenous plant biodiversity in South Africa. Catorhintha schaffneri Barilovsky and Garcia (Coreidae), the pereskia stem-wilter, was collected at coastal sites in the subtropical region of Santa Catarina state in southern Brazil and released as a biological control agent to control P. aculeata, in South Africa, in 2014. The introduced distribution of P. aculeata covers a wide variety of climatic conditions which was expected to influence the establishment success of the new agent. The thermal tolerance of C. schaffneri was investigated by developing a degree-day model and calculating the thermal limits of the species. The influence of humidity on egg hatchability and adult survival was also investigated. These data were then used to determine where the agent was likely to establish in South Africa using both weather station and microclimate temperature data. To ground-truth these predictions, sixteen release sites were selected covering a wide range of climatic conditions in the introduced distribution. Three releases of 30 adult C. schaffneri were conducted at each site and population establishment was recorded. Field establishment was recorded at only two of the sixteen experimental release sites. Low winter temperatures were predicted to prevent establishment at seven of the sixteen sites, but nine sites were considered climatically suitable according to the agent’s thermal physiology. Low rainfall and humidity could explain why the agent did not survive at some sites with suitable thermal climates. Many of the thermally suitable sites were affected by a severe drought over the course of the experiment, so further releases during periods with average rainfall and humidity are warranted and could confirm whether the drought was a significant factor influencing the failure of the agent to establish. Although climatic-matching and thermal physiology studies are valuable for tentative predictions of establishment success, there are numerous variables involved that require ground-truthing. Releasing the agent over a wide range of climatic zones believed to be within the thermal limits of the agent, and following releases with detailed post-release evaluations may be the best method of determining where future releases should be focused.
- Full Text:
- Date Issued: 2020
More than a century of biological control against invasive alien plants in South Africa: a synoptic view of what has been accomplished
- Authors: Hill, Martin P , Moran, V Clifford , Hoffmann, John H , Neser, Stefan , Zimmermann, Helmuth G , Simelane, David O , Klein, Hildegard , Zachariades, Costas , Wood, Alan R , Byrne, Marcus J , Paterson, Iain D , Martin, Grant D , Coetzee, Julie A
- Date: 2020
- Language: English
- Type: text , book
- Identifier: http://hdl.handle.net/10962/176260 , vital:42679 , ISBN 978-3-030-32394-3 , 10.1007/978-3-030-32394-3
- Description: Invasive alien plant species negatively affect agricultural production, degrade conservation areas, reduce water supplies, and increase the intensity of wild fires. Since 1913, biological control agents ie plant-feeding insects, mites, and fungal pathogens, have been deployed in South Africa to supplement other management practices (herbicides and mechanical controls) used against these invasive plant species. We do not describe the biological control agent species.
- Full Text: false
- Date Issued: 2020
Predicting non-target impacts:
- Authors: Paynter, Quentin , Paterson, Iain D , Kwong, Raelene M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149982 , vital:38921 , https://doi.org/10.1016/j.cois.2020.02.002
- Description: Biocontrol of invasive alien weeds has produced great benefits, but concerns over undesirable impacts on non-target plants and/or indirect interactions between biocontrol agents and other biota impede the implementation of biocontrol in some countries. Although great strides have been made, continuing uncertainties predicting the realized host range of candidate agents is probably resulting in some being erroneously rejected due to overestimation of risk. Further refinement of host-range testing protocols is therefore desirable. Indirect interactions are inherently harder to predict, and the risk of both direct and indirect non-target impacts may change over time due to biocontrol agents evolving or expanding their range under climate change. Future research directions to better understand the risk of non-target impacts over time are discussed.
- Full Text:
- Date Issued: 2020
The potential for biological control on cryptic plant invasions
- Authors: Canavan, Kim N , Canavan, Susan , Harms, Nathan E , Lambertini, Carla , Paterson, Iain D , Thum, Ryan
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423562 , vital:72072 , xlink:href="https://doi.org/10.1016/j.biocontrol.2020.104243"
- Description: Cryptic invasions can be defined as ‘the occurrence of an invasive species or genotype that was not previously recognised as alien in origin or not distinguished from other aliens’. Such invasions can result in negative impacts on the recipient ecosystems and disturb the evolutionary history of native plant populations. Many cryptic invasions have become so problematic that there is a need to implement control measures. This paper explores the potential for biological control to be implemented as a means of managing cryptic invasions. Firstly, the paper defines the different forms of cryptic invasion, differentiating between interspecific and intraspecific invasions; this hierarchy influences how to detect, study and ultimately implement biological control when cryptic invasions occur. Secondly, unique challenges associated with biological control programmes for cryptic invasions are addressed, including: the need for intraspecific level host specificity in agents, the occurrence of hybridisation between native species/lineages and the target weed, the role of enemy release in cryptic invasions in the presence of closely related native plant species/lineages, and a review of potential stakeholder conflicts of interest and legislation. Biological control of cryptic invasions has been shown to be possible, however the process will be more difficult and complex than controlling traditional targets and will likely take up more time and resources. If these challenges are overcome, then biological control programmes against cryptic invasions should be able to proceed and maintain the same standards as traditional biological control programmes.
- Full Text:
- Date Issued: 2020
Cryptic species of a water hyacinth biological control agent revealed in South Africa: host specificity, impact, and thermal tolerance
- Authors: Paterson, Iain D , Coetzee, Julie A , Weyl, Philip S R , Griffith, Tamzin C , Voogt, Nina , Hill, Martin P
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/423982 , vital:72113 , xlink:href="https://doi.org/10.1111/eea.12812"
- Description: The discovery that cryptic species are more abundant than previously thought has implications for weed biological control, as there is a risk that cryptic species may be inadvertently released with consequences for the safety of the practice. A cryptic species of a biological control agent released for the control of the invasive alien macrophyte, water hyacinth, Eichhornia crassipes (C. Mart.) Solms. (Pontederiaceae), was recently discovered in South Africa. The two species were considered a single species prior to genetic analysis and interbreeding experiments. The original biological control agent retains the name Eccritotarsus catarinensis (Carvalho) (Heteroptera: Miridae) whereas the new species has been described as Eccritotarsus eichhorniae Henry. In this study, we compared the host specificity, efficacy, and thermal physiologies of the two species. The host specificity of the two species within the Pontederiaceae was very similar and both are safe for release in South Africa. Comparison of the per capita impact of the two species indicated that E. eichhorniae was the more damaging species but this is likely to be influenced by temperature, with E. catarinensis being more effective under lower temperatures and E. eichhorniae being more effective under higher temperatures. Releasing the correct species for the thermal environment of each release site will improve the level of control of water hyacinth in South Africa. This example highlights the need to keep populations of biological control agents from different native range collection localities separate, and to screen for host specificity and efficacy.
- Full Text:
- Date Issued: 2019
Eight decades of invasion by Chromolaena odorata (Asteraceae) and its biological control in West Africa: the story so far
- Authors: Aigbedion-Atalor, Pascal O , Adom, Medetissi , Day, Michael D , Uyi, Osariyekemwen O , Egbon, Ikponmwosa N , Idemudia, I , Igbinosa, Igho B , Paterson, Iain D , Braimah, Haruna , Wilson, David D , Zachariades, Costas
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417450 , vital:71454 , xlink:href="https://doi.org/10.1080/09583157.2019.1670782"
- Description: Chromolaena odorata (L.) R.M. King and H. Robinson (Asteraceae) is a perennial weedy shrub of neotropical origin and a serious biotic threat in its invasive range. The Asian-West Africa (AWA) biotype of C. odorata present in West Africa is both morphologically and genetically different from the southern African (SA) biotype. The AWA biotype was first introduced into Nigeria in the late 1930s and rapidly spread across West Africa. Currently, 12 of the 16 countries in West Africa have been invaded, with significant negative effects on indigenous flora and fauna. However, locals in West Africa have found several uses for the weed. As chemical, physical and other conventional methods were unsustainable, costly and largely ineffective, three biological control agents, Apion brunneonigrum (Coleoptera: Brentidae), Pareuchaetes pseudoinsulata (Lepidoptera: Erebidae) and Cecidochares connexa (Diptera: Tephritidae), have been released in West Africa between the 1970s and the early 2000s. However, only C. connexa and P. pseudoinsulata established, contributing to the control of the weed, in six and four countries in West Africa respectively. Limited research funding, the absence of post-release evaluations of the established agents, and the ‘conflict of interest’ status of C. odorata (i.e. being beneficial for local use but damaging to ecosystem services and agriculture), are serious factors deterring the overall biological control effort. Here, using historical records and field surveys, we examine the invasion history, spread, impacts, and management of C. odorata in West Africa and make recommendations for the sustainable management of C. odorata in the region.
- Full Text:
- Date Issued: 2019
Grasses as suitable targets for classical weed biological control
- Authors: Sutton, Guy F , Day, Michael D , den Breeyen, Alana , Goolsby, J A , Cristofaro, M , McConnachie, Andrew J , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417984 , vital:71499 , xlink:href="https://doi.org/10.1007/s10526-019-09968-8"
- Description: Grasses are amongst the most abundant and environmentally damaging invasive weeds worldwide. Biological control is frequently employed as a sustainable and cost-effective management strategy for many weeds. However, grasses have not been actively pursued as targets for classical weed biological control due to a perceived lack of sufficiently specialised and damaging natural enemies to use as biological control agents. There are also concerns that the risk posed to economically important crop/pasture species and closely-related native species is too great to consider implementing biological control for invasive grasses. In this paper, we review the literature and demonstrate that grasses can possess suitably host-specific and damaging natural enemies to warrant consideration as potential biological control agents. The risk of grass biological control is no greater than for other weedy taxa if practitioners follow appropriately rigorous risk assessments protocols.
- Full Text:
- Date Issued: 2019
Interactions between two biological control agents and their target weed: a beetle, a bug and a cactus weed
- Authors: Mnqeta, Zezethu , Paterson, Iain D
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417475 , vital:71456 , xlink:href="https://doi.org/10.1080/09583157.2019.1631960"
- Description: Pereskia aculeata Miller (Cactaceae) is an invasive alien shrub introduced into South Africa from Brazil. The leaf-feeding beetle, Phenrica guerini Bechyne (Chrysomelidae), was released as a biological control agent in South Africa in 1991 followed by the stem-wilting bug, Catorhintha schaffneri Brailovsky and Garcia (Coreidae), in 2014. This study investigated the interactions between the two agents under laboratory conditions. Potted plants were exposed to one of four treatments: control (no agents), P. guerini only, C. schaffneri only and both species together. Four densities, ranging from 2 to 12 insects per plant were used. Cathorhitha schaffneri alone at low to moderate densities resulted in the same reduction in number of leaves and shoot length as when combine with P. guerini. At the highest density, C. schaffneri reduced the number of leaves significantly more than any treatment. Mortality of P. guerini was significantly higher than C. schaffneri at the highest density when in combination. The antagonistic interaction between P. guerini and C. schaffneri suggests that these agents should not be released together because this would impact negatively on the overall biocontrol programme against P. aculeata. It is recommended that C. schaffneri should be released at sites where P. guerini is not present. Extrapolation of laboratory-based studies into the field is often challenging, so mass-rearing and releases of P. guerini should continue until there is convincing proof that C. schaffneri alone is more effective than P. guerini in the field.
- Full Text:
- Date Issued: 2019