Predicting non-target impacts:
- Authors: Paynter, Quentin , Paterson, Iain D , Kwong, Raelene M
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/149982 , vital:38921 , https://doi.org/10.1016/j.cois.2020.02.002
- Description: Biocontrol of invasive alien weeds has produced great benefits, but concerns over undesirable impacts on non-target plants and/or indirect interactions between biocontrol agents and other biota impede the implementation of biocontrol in some countries. Although great strides have been made, continuing uncertainties predicting the realized host range of candidate agents is probably resulting in some being erroneously rejected due to overestimation of risk. Further refinement of host-range testing protocols is therefore desirable. Indirect interactions are inherently harder to predict, and the risk of both direct and indirect non-target impacts may change over time due to biocontrol agents evolving or expanding their range under climate change. Future research directions to better understand the risk of non-target impacts over time are discussed.
- Full Text:
- Date Issued: 2020
Genetic matching of invasive populations of the African tulip tree, Spathodea campanulata Beauv.(Bignoniaceae), to their native distribution: Maximising the likelihood of selecting host-compatible biological control agents
- Authors: Sutton, Guy F , Paterson, Iain D , Paynter, Quentin
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/405797 , vital:70207 , xlink:href="https://doi.org/10.1016/j.biocontrol.2017.08.015"
- Description: Spathodea campanulata Beauv (Bignoniaceae) has become a highly damaging environmental and agricultural weed in the Pacific Islands. It has been targeted for biological control due to the costly and inefficient nature of physical and chemical control methods. Determining the origin of weed populations has been increasingly recognised as an important component of successful biological control programmes, and may be important for the biological control of S. campanulata due to the high degree of morphological variability within the species, as well as the broad native distribution. Genetic matching, using inter-simple sequence repeats (ISSR’s), and morphological data found support for invasive Pacific Island S. campanulata plants originating from West Africa. Pacific and West African plants were genetically most similar, and were differentiated from native plants from East/Central Africa by PCA and Bayesian-clustering (STRUCTURE) analyses. Genetic data was corroborated by morphological data which showed that West African and Pacific Islands plants had more sparsely pubescent leaves compared to plants from East/Central Africa. Populations in South Africa, where the plant is introduced but not problematic, originated from a different source population than those in the Pacific Islands, probably in East/Central Africa. A greater sampling effort is required before the origin of the South African populations can be determined with certainty. Herbivores and pathogens for the Pacific Islands should be collected from West Africa as they are more likely to be compatible with S. campanulata plants in this region.
- Full Text:
- Date Issued: 2017
Predicting the risk of non-target damage to a close relative of a target weed using sequential no-choice tests, paired-choice tests and olfactory discrimination experiments
- Authors: Sutton, Guy F , Paterson, Iain D , Compton, Stephen G , Paynter, Quentin
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/417511 , vital:71459 , xlink:href="https://doi.org/10.1080/09583157.2015.1118615"
- Description: We investigated host-plant utilisation by the candidate biocontrol agent Paradibolia coerulea (Coleoptera: Chrysomelidae) on the target plant Spathodea campanulata Beauv. (Bignoniaceae) and a closely related non-target plant, Kigelia africana (Lam.) Benth. (Bignoniaceae). Paired-choice and sequential no-choice experiments were performed and coupled with olfactory discrimination experiments to test the insects’ responses to volatiles from both plant species as well as to cues from conspecific beetles. Although K. africana was utilised by P. coerulea, S. campanulata was preferred for both adult feeding and oviposition. Interestingly, whereas females were attracted to olfactory cues emitted by S. campanulata, males demonstrated no such olfactory discrimination. Females were also attracted to cues deposited by males, and males were deterred by cues from other males, but neither sex responded to female olfactory cues. Very few eggs were recorded on K. africana and none of the larvae that hatched on K. africana survived the first instar. Both S. campanulata and K. africana are suitable for adult feeding, but persistent utilisation of K. africana in the field is unlikely because larval development is only possible on S. campanulata and because the adult females are strongly attracted to volatiles emitted by the target plant. Nevertheless, if P. coerulea is released as a biocontrol agent, spill-over adult feeding could potentially occur on K. africana growing sympatrically with S. campanulata. Because P. coerulea cannot complete its development on K. africana, non-target damage will only occur where the target plant is present, with an intensity dependent on densities of adult beetles locally.
- Full Text:
- Date Issued: 2017
West African arthropods hold promise as biological control agents for an invasive tree in the Pacific Islands
- Authors: Paterson, Iain D , Paynter, Quentin , Neser, Stefan , Akpabey, Felix J , Compton, Stephen G , Orapa, W
- Date: 2017
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/407119 , vital:70338 , xlink:href="https://hdl.handle.net/10520/EJC-639c91613"
- Description: African tulip tree, Spathodea campanulata Beauv. (Bignoniaceae), is a large tree of secondary forests, forest edges and savannas that is indigenous to Central and West Africa (Bidgood 1994). It has been widely utilised as an ornamental plant due to its beautiful flowers, fast growth and relative ease of cultivation, as a shade tree in parks and coffee plantations, and as a living fencepost (Francis 1990). Naturalisation has often followed cultivation of the plant, which is now established outside of the native range in Africa (Hedberg et al. 2006), the Caribbean (Francis 1990; Labrada and Medina 2009) and many Pacific islands (Meyer 2004), including Hawaii, Papua New Guinea, Fiji, Samoa, Tonga,Vanuatu and Tahiti (Lowe et al. 2000; Dovey et al. 2004; Labrada and Medina 2009). On some of these islands it has become a destructive weed, invading indigenous forests and having a severe impact on agricultural production (Labrada and Medina 2009; Larrue et al. 2014). This has resulted in African tulip tree being recognised as one of the 100 worst alien invasive species worldwide, along with only 30 other terrestrial plants (Lowe et al. 2000).
- Full Text:
- Date Issued: 2017