Dual action of asymmetrical zinc (II) phthalocyanines conjugated to silver tungstate nanoparticles towards photodegradation of tetracycline and inactivation of Staphylococcus aureus bacteria
- Mgidlana, Sithi, Sen, Pinar, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360400 , vital:65085 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114444"
- Description: Asymmetric (A3B) Zn(II) phthalocyanines containing dimethoxy phenoxy as the dominant substituent and (phenoxy) propanoic acid (1), (phenoxy) acetic acid (2), and (phenoxy) acrylic acid (3) as the other substituents were synthesized and linked to silver tungstate nanoparticles (Ag2WO4 NPs). The photocatalytic activities of the prepared complexes 1–3 and nanoconjugates were evaluated for the photodegradation of tetracycline (TC) under visible-light irradiation and for photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus. The results revealed that complex 3 had the best photocatalytic and PACT performance compared to 1 and 2, corresponding to the higher singlet oxygen quantum yield of the former in dimethyl sulfoxide. The photodegradation reaction was also examined using EPR and a mechanism for generation of singlet oxygen under visible light was confirmed. Photoinactivation of S. aureus improved in the presence of TC, when the two are applied together.
- Full Text:
- Date Issued: 2023
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360400 , vital:65085 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114444"
- Description: Asymmetric (A3B) Zn(II) phthalocyanines containing dimethoxy phenoxy as the dominant substituent and (phenoxy) propanoic acid (1), (phenoxy) acetic acid (2), and (phenoxy) acrylic acid (3) as the other substituents were synthesized and linked to silver tungstate nanoparticles (Ag2WO4 NPs). The photocatalytic activities of the prepared complexes 1–3 and nanoconjugates were evaluated for the photodegradation of tetracycline (TC) under visible-light irradiation and for photodynamic antimicrobial chemotherapy (PACT) activity against S. aureus. The results revealed that complex 3 had the best photocatalytic and PACT performance compared to 1 and 2, corresponding to the higher singlet oxygen quantum yield of the former in dimethyl sulfoxide. The photodegradation reaction was also examined using EPR and a mechanism for generation of singlet oxygen under visible light was confirmed. Photoinactivation of S. aureus improved in the presence of TC, when the two are applied together.
- Full Text:
- Date Issued: 2023
Photoantimicrobial activity of Schiff-base morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms
- Sindelo, Azole, Sen, Pinar, Nyokong, Tebello
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
Photodynamic inactivation of methicillin-resistant Staphylococcus aureus using pyrrolidinium containing Schiff base phthalocyanines
- Sindelo, Azole, Sen, Pinar, Nyokong, Tebello
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360449 , vital:65089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114535"
- Description: New tetra-substituted zinc and indium Schiff base phthalocyanines (ZnPc and InPc, respectively) are synthesized and characterized herein. The ethyl pyrrolidine (ZnPc-2, InPc-2) and propyl pyrrolidine (ZnPc-3, InPc-3) substituted Schiff base Pcs were reacted with methyl iodide to form their cationic derivatives (ZnPc-2Q, InPc-2Q, ZnPc-3Q, and InPc-3Q, respectively). The photophysical and photochemical properties of the Pcs were studied. The cationic Pcs generated higher singlet oxygen quantum yield in aqueous media than the neutral Pcs. The photoinactivation of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) strains was evaluated. 5 µM ZnPc-3Q and InPc-3Q inactivated 100 % of the MSSA and MRSA while 5 µM ZnPc-2Q and InPc-2Q eradicated 100 % for MSSA and 97.2 % and 98.7 % (respectively) of the MRSA. The photodynamic antimicrobial chemotherapy studies depended on singlet oxygen ability, the charges, and the extension of the alkyl groups.
- Full Text:
- Date Issued: 2023
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360449 , vital:65089 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114535"
- Description: New tetra-substituted zinc and indium Schiff base phthalocyanines (ZnPc and InPc, respectively) are synthesized and characterized herein. The ethyl pyrrolidine (ZnPc-2, InPc-2) and propyl pyrrolidine (ZnPc-3, InPc-3) substituted Schiff base Pcs were reacted with methyl iodide to form their cationic derivatives (ZnPc-2Q, InPc-2Q, ZnPc-3Q, and InPc-3Q, respectively). The photophysical and photochemical properties of the Pcs were studied. The cationic Pcs generated higher singlet oxygen quantum yield in aqueous media than the neutral Pcs. The photoinactivation of Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-sensitive Staphylococcus aureus (MSSA) strains was evaluated. 5 µM ZnPc-3Q and InPc-3Q inactivated 100 % of the MSSA and MRSA while 5 µM ZnPc-2Q and InPc-2Q eradicated 100 % for MSSA and 97.2 % and 98.7 % (respectively) of the MRSA. The photodynamic antimicrobial chemotherapy studies depended on singlet oxygen ability, the charges, and the extension of the alkyl groups.
- Full Text:
- Date Issued: 2023
Light-driven antimicrobial therapy of palladium porphyrins and their chitosan immobilization derivatives and their photophysical-chemical properties
- Sen, Pinar, Soy, Rodah, Mgidlana, Sithi, Mack, John, Nyokong, Tebello
- Authors: Sen, Pinar , Soy, Rodah , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
- Authors: Sen, Pinar , Soy, Rodah , Mgidlana, Sithi , Mack, John , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300112 , vital:57894 , xlink:href="https://doi.org/10.1016/j.dyepig.2022.110313"
- Description: The emergence of antimicrobial resistance has made the development of photodynamic therapy (PDT) related applications essential, since microorganisms can not form resistance to this method. Porphyrins are well-known photosensitizers for PDT related applications. Thus, the present study outlines the synthesis, characterization and evaluation of the utility of palladium porphyrins and their chitosan inclusion complexes as photosensitizer dye in photodynamic antimicrobial therapy (PACT). Before in vitro cell studies, the photophysical-chemical studies of all obtained structures were performed in solution. It was observed that the immobilization of the porphyrins into the chitosan influenced the photophysical-chemical and PACT activity properties. The determined fluorescence quantum yield was very low, in the range of 0.007–0.028 for all samples indicating the efficient triplet state population to cause high singlet oxygen quantum yield (ΦΔ). The measured ΦΔ values were in the range of 0.51–0.61 for the porphyrins and 0.53–0.66 for porphyrin chitosan immobilization complexes. Our results demonstrate that the PACT activity of cationic porphyrin (P3) and its chitosan immobilization form (P3-Ct) were more efficient in decreasing the number of viable cells up to 100% in vitro.
- Full Text:
- Date Issued: 2022
Photodegradation of tetracycline by asymmetrical zinc (II) phthalocyanines conjugated to cobalt tungstate nanoparticles
- Mgidlana, Sithi, Sen, Pinar, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300233 , vital:57908 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.132938"
- Description: This work focused on syntheses of novel asymmetrically tetra substituted Zn phthalocyanines (ZnPc) each containing a single carboxyl group, with the other substituents bearing alkynyl (complex 1) and fluorine containing groups (complexes 2 and 3). The complexes were conjugated to cobalt tungstate nanoparticles and employed as efficient photocatalysts for degradation of tetracycline in water. ZnPc complexes and their conjugates showed good photophysical and photochemical properties behaviour with complex 1 giving higher triplet and singlet oxygen quantum yields compared to 2 and 3. Complex 1 showed higher activity towards the photodegradation of tetracycline compared to complexes 2 and 3, with higher kobs and initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model.
- Full Text:
- Date Issued: 2022
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/300233 , vital:57908 , xlink:href="https://doi.org/10.1016/j.molstruc.2022.132938"
- Description: This work focused on syntheses of novel asymmetrically tetra substituted Zn phthalocyanines (ZnPc) each containing a single carboxyl group, with the other substituents bearing alkynyl (complex 1) and fluorine containing groups (complexes 2 and 3). The complexes were conjugated to cobalt tungstate nanoparticles and employed as efficient photocatalysts for degradation of tetracycline in water. ZnPc complexes and their conjugates showed good photophysical and photochemical properties behaviour with complex 1 giving higher triplet and singlet oxygen quantum yields compared to 2 and 3. Complex 1 showed higher activity towards the photodegradation of tetracycline compared to complexes 2 and 3, with higher kobs and initial rates for the former. The photocatalysis obeyed the Langmuir-Hinshelwood kinetic model.
- Full Text:
- Date Issued: 2022
Symmetry effect of cobalt phthalocyanines on the aluminium corrosion inhibition in hydrochloric acid
- Nnaji, Nnaemeka, Sen, Pinar, Nyokong, Tebello
- Authors: Nnaji, Nnaemeka , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231323 , vital:49877 , xlink:href="https://doi.org/10.1016/j.matlet.2021.130892"
- Description: The aluminium corrosion retardation potentials of phthalocyanine-based dyes, cobalt (II) 2,9,16-tris(4-(tert-butyl)phenoxy)-23-(pyridin-4-yloxy)phthalocyanine (D1) and cobalt (II) 2,9,16,24-tetrakis(4-(tert-butyl)phenoxy)phthalocyanine (D2) in 1 M hydrochloric acid were evaluated. Results from potentiodynamic polarization measurements show that inhibition efficiency increased with inhibitor concentration at 28 °C with values of 91.9 % and 87.0 % values respectively for D1 and D2 at 10 μM.
- Full Text:
- Date Issued: 2022
Symmetry effect of cobalt phthalocyanines on the aluminium corrosion inhibition in hydrochloric acid
- Authors: Nnaji, Nnaemeka , Sen, Pinar , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231323 , vital:49877 , xlink:href="https://doi.org/10.1016/j.matlet.2021.130892"
- Description: The aluminium corrosion retardation potentials of phthalocyanine-based dyes, cobalt (II) 2,9,16-tris(4-(tert-butyl)phenoxy)-23-(pyridin-4-yloxy)phthalocyanine (D1) and cobalt (II) 2,9,16,24-tetrakis(4-(tert-butyl)phenoxy)phthalocyanine (D2) in 1 M hydrochloric acid were evaluated. Results from potentiodynamic polarization measurements show that inhibition efficiency increased with inhibitor concentration at 28 °C with values of 91.9 % and 87.0 % values respectively for D1 and D2 at 10 μM.
- Full Text:
- Date Issued: 2022
Aluminum corrosion retardation properties of acetamidophenoxy phthalocyanines: Effect of central metal
- Nnaji, Nnaemeka, Sen, Pinar, Nyokong, Tebello
- Authors: Nnaji, Nnaemeka , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185433 , vital:44386 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.130806"
- Description: Corrosion inhibition performances and adsorption behaviour at the aluminum-HCl solution interface were investigated for metal free (2), ClGa (3) and Co (4) tetrakis (4-acetamidophenoxy) phthalocyanine. Electrochemical techniques were used in the study and complemented with Fourier transform infrared, scanning electron microscopy and X-ray diffraction measurements. Potentiodynamic polarization technique gave inhibition efficiency values as 93.3% (2), 69.7% (3) and 87.7% (4) at 28°C at highest inhibitor concentration (10 µM) in the following order 2 > 4 > 3. These compounds exhibited good corrosion inhibition performance as mixed-type corrosion inhibitors. All applied techniques gave results which corroborated.
- Full Text:
- Date Issued: 2021
- Authors: Nnaji, Nnaemeka , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185433 , vital:44386 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.130806"
- Description: Corrosion inhibition performances and adsorption behaviour at the aluminum-HCl solution interface were investigated for metal free (2), ClGa (3) and Co (4) tetrakis (4-acetamidophenoxy) phthalocyanine. Electrochemical techniques were used in the study and complemented with Fourier transform infrared, scanning electron microscopy and X-ray diffraction measurements. Potentiodynamic polarization technique gave inhibition efficiency values as 93.3% (2), 69.7% (3) and 87.7% (4) at 28°C at highest inhibitor concentration (10 µM) in the following order 2 > 4 > 3. These compounds exhibited good corrosion inhibition performance as mixed-type corrosion inhibitors. All applied techniques gave results which corroborated.
- Full Text:
- Date Issued: 2021
Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol
- Ndebele, Nobuhle, Sen, Pinar, Nyokong, Tebello
- Authors: Ndebele, Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231410 , vital:49885 , xlink:href="https://doi.org/10.1016/j.poly.2021.115518"
- Description: In this study, four new copper phthalocyanine complexes were synthesised and studied as electrocatalysts for the detection of catechol. Two of these complexes were derived from a symmetrical benzaldehyde phthalocyanine complex via the condensation of the benzaldehyde substituents with amine reagents. The electrocatalysts proved to be highly stable towards the detection of catechol. The oxidation peaks obtained using cyclic voltammetry range from 0.20 to 0.38 V. Detection limits were obtained via chronoamperometry and are as low as 0.16 µM with fairly high sensitives being obtained. Overall all four copper complexes exhibited excellent electrocatalytic activity towards the electrooxidation of catechol.
- Full Text:
- Date Issued: 2021
- Authors: Ndebele, Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231410 , vital:49885 , xlink:href="https://doi.org/10.1016/j.poly.2021.115518"
- Description: In this study, four new copper phthalocyanine complexes were synthesised and studied as electrocatalysts for the detection of catechol. Two of these complexes were derived from a symmetrical benzaldehyde phthalocyanine complex via the condensation of the benzaldehyde substituents with amine reagents. The electrocatalysts proved to be highly stable towards the detection of catechol. The oxidation peaks obtained using cyclic voltammetry range from 0.20 to 0.38 V. Detection limits were obtained via chronoamperometry and are as low as 0.16 µM with fairly high sensitives being obtained. Overall all four copper complexes exhibited excellent electrocatalytic activity towards the electrooxidation of catechol.
- Full Text:
- Date Issued: 2021
Electrochemical detection of dopamine using phthalocyanine-nitrogen-doped graphene quantum dot conjugates
- Ndebele Nobuhle, Sen, Pinar, Nyokong, Tebello
- Authors: Ndebele Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185724 , vital:44418 , xlink:href="https://doi.org/10.1016/j.jelechem.2021.115111"
- Description: Two cobalt phthalocyanine molecules were synthesized, a symmetrically substituted CoPc (1) and an unsymmetrically substituted CoPc (2). These CoPcs were π-π stacked onto nitrogen-doped graphene quantum dots (NGQDs). The CoPcs, NGQDs and their respective conjugates were used as electro-catalytic probes in the electrochemical oxidation of dopamine. The molecules were adsorbed onto a glassy carbon electrode (GCE) using the drop dry method, the GCE was used to support those catalysts. The electrooxidation of dopamine was studied using cyclic voltammetry and chronoamperometry. An improvement in the sensitivity and limit of detection was observed upon conjugation.
- Full Text:
- Date Issued: 2021
- Authors: Ndebele Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185724 , vital:44418 , xlink:href="https://doi.org/10.1016/j.jelechem.2021.115111"
- Description: Two cobalt phthalocyanine molecules were synthesized, a symmetrically substituted CoPc (1) and an unsymmetrically substituted CoPc (2). These CoPcs were π-π stacked onto nitrogen-doped graphene quantum dots (NGQDs). The CoPcs, NGQDs and their respective conjugates were used as electro-catalytic probes in the electrochemical oxidation of dopamine. The molecules were adsorbed onto a glassy carbon electrode (GCE) using the drop dry method, the GCE was used to support those catalysts. The electrooxidation of dopamine was studied using cyclic voltammetry and chronoamperometry. An improvement in the sensitivity and limit of detection was observed upon conjugation.
- Full Text:
- Date Issued: 2021
Photodynamic inactivation of Staphylococcus Aureus with Schiff base substituted Zinc phthalocyanines through conjugation to silver nanoparticles
- Sen, Pinar, Nyokong, Tebello
- Authors: Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185688 , vital:44415 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.130012"
- Description: We present the preparation of Schiff base substituted neutral phthalocyanines derived from aldehyde-substituted phthalocyanine which are conjugated to silver nanoparticles through covalent-like strong interactions. The photophysicochemical properties of the nanoconjugates and the Pcs alone were studied comparatively. The photodynamic antimicrobial chemotherapy (PACT) activities. of prepared photosensitizers was investigated against Gram-positive bacterium (Staphylococcus aureus). Unlike Pcs alone, conjugated phthalocyanines to silver nanoparticles showed excellent photodynamic antimicrobial activity with the 100% reduction percentage upon illumination.
- Full Text:
- Date Issued: 2021
- Authors: Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185688 , vital:44415 , xlink:href="https://doi.org/10.1016/j.molstruc.2021.130012"
- Description: We present the preparation of Schiff base substituted neutral phthalocyanines derived from aldehyde-substituted phthalocyanine which are conjugated to silver nanoparticles through covalent-like strong interactions. The photophysicochemical properties of the nanoconjugates and the Pcs alone were studied comparatively. The photodynamic antimicrobial chemotherapy (PACT) activities. of prepared photosensitizers was investigated against Gram-positive bacterium (Staphylococcus aureus). Unlike Pcs alone, conjugated phthalocyanines to silver nanoparticles showed excellent photodynamic antimicrobial activity with the 100% reduction percentage upon illumination.
- Full Text:
- Date Issued: 2021
Photodynamic therapy activities of phthalocyanine-based macromolecular photosensitizers on MCF-7 breast cancer cells
- Ahmetali, Erem, Sen, Pinar, Süer, N Ceren, Nyokong, Tebello, Erin, Tarik, Sener, M Kasim
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Nyokong, Tebello , Erin, Tarik , Sener, M Kasim
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185655 , vital:44407 , xlink:href="https://doi.org/10.1080/10601325.2021.1934012"
- Description: Poly(oxanorbornene)s with zinc(II) phthalocyanine side chains have been synthesized by ring-opening metathesis polymerization. The incorporation of zinc(II) phthalocyanine into cationic polymer has given poly(oxanorbornene)s noteworthy photophysicochemical properties and the capacity to generate singlet oxygen under light irradiation. To investigate photosensitizer’s properties of the newly synthesized polymers P6 and P7: fluorescence (ΦF), singlet oxygen (ΦΔ) and triplet (ΦT) quantum yields of polymers have been measured in dimethyl sulfoxide and aqueous medium. Singlet oxygen quantum yields of P6 and P7 have been found to be 0.22 and 0.20 in dimethyl sulfoxide, respectively. Then, photodynamic therapy activities of polymers (P1-P7) against human breast adenocarcinoma cell line (MCF-7 cells) have been investigated. The copolymer P5 bearing pendant zinc(II) phthalocyanine and triethyl phosphonium functionalities has showed enhanced PDT activity with less than 10% viable cells at 60 μg/mL.
- Full Text:
- Date Issued: 2021
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Nyokong, Tebello , Erin, Tarik , Sener, M Kasim
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185655 , vital:44407 , xlink:href="https://doi.org/10.1080/10601325.2021.1934012"
- Description: Poly(oxanorbornene)s with zinc(II) phthalocyanine side chains have been synthesized by ring-opening metathesis polymerization. The incorporation of zinc(II) phthalocyanine into cationic polymer has given poly(oxanorbornene)s noteworthy photophysicochemical properties and the capacity to generate singlet oxygen under light irradiation. To investigate photosensitizer’s properties of the newly synthesized polymers P6 and P7: fluorescence (ΦF), singlet oxygen (ΦΔ) and triplet (ΦT) quantum yields of polymers have been measured in dimethyl sulfoxide and aqueous medium. Singlet oxygen quantum yields of P6 and P7 have been found to be 0.22 and 0.20 in dimethyl sulfoxide, respectively. Then, photodynamic therapy activities of polymers (P1-P7) against human breast adenocarcinoma cell line (MCF-7 cells) have been investigated. The copolymer P5 bearing pendant zinc(II) phthalocyanine and triethyl phosphonium functionalities has showed enhanced PDT activity with less than 10% viable cells at 60 μg/mL.
- Full Text:
- Date Issued: 2021
Promising photodynamic antimicrobial activity of polyimine substituted zinc phthalocyanine and its polycationic derivative when conjugated to nitrogen, sulfur, co-doped graphene quantum dots against Staphylococcus aureus
- Sen, Pinar, Nyokong, Tebello
- Authors: Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185304 , vital:44363 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102300"
- Description: Antimicrobial resistance is a most important problem facing the treatment of infectious diseases. Antimicrobial photodynamic therapy is an alternative treatment strategy, considered to be cost-effective and feasible. For this purpose, octa-imine substituted ZnPc (3) have been prepared and conjugated to nitrogen, sulfur co-doped graphene quantum dots (N,S-GQDs) through π-π stacking. The photophysical and photochemical properties of Pc alone and and Pc-conjugated to the GQD nanomaterial such as absorption, fluorescence, fluorescence life time, singlet oxygen quantum yields, triplet state quantum yields and exited state lifetimes were investigated in solutions before in vitro cell studies. The PACT activity of prepared structures was investigated against Gram-positive (Staphylococcus aureus). Our results suggest that the in the case of conjugation of zinc Pc to N,S-GQDs, photodynamic inactivation increased with the 100 % reduction percentage.
- Full Text:
- Date Issued: 2021
- Authors: Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185304 , vital:44363 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102300"
- Description: Antimicrobial resistance is a most important problem facing the treatment of infectious diseases. Antimicrobial photodynamic therapy is an alternative treatment strategy, considered to be cost-effective and feasible. For this purpose, octa-imine substituted ZnPc (3) have been prepared and conjugated to nitrogen, sulfur co-doped graphene quantum dots (N,S-GQDs) through π-π stacking. The photophysical and photochemical properties of Pc alone and and Pc-conjugated to the GQD nanomaterial such as absorption, fluorescence, fluorescence life time, singlet oxygen quantum yields, triplet state quantum yields and exited state lifetimes were investigated in solutions before in vitro cell studies. The PACT activity of prepared structures was investigated against Gram-positive (Staphylococcus aureus). Our results suggest that the in the case of conjugation of zinc Pc to N,S-GQDs, photodynamic inactivation increased with the 100 % reduction percentage.
- Full Text:
- Date Issued: 2021
The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles
- Mapukata, Sibusisiwe, Sen, Pinar, Osifeko, Olawale L, Nyokong, Tebello
- Authors: Mapukata, Sibusisiwe , Sen, Pinar , Osifeko, Olawale L , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185667 , vital:44408 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102361"
- Description: The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
- Full Text:
- Date Issued: 2021
- Authors: Mapukata, Sibusisiwe , Sen, Pinar , Osifeko, Olawale L , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185667 , vital:44408 , xlink:href="https://doi.org/10.1016/j.pdpdt.2021.102361"
- Description: The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
- Full Text:
- Date Issued: 2021
The photophysicochemical properties and photodynamic therapy activity of Schiff base substituted phthalocyanines doped into silica nanoparticles and conjugated to folic acid
- Magadla, Aviwe, Babu, Balaji, Sen, Pinar, Nyokong, Tebello
- Authors: Magadla, Aviwe , Babu, Balaji , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185407 , vital:44384 , xlink:href="https://doi.org/10.1016/j.poly.2021.115227"
- Description: This work explores the synthesis, photophysicochemical properties and photodynamic activity (PDT) of tetrakis [N,N’–bis (4-(diethylamino)benzylidene) amino)propan-2-yl)oxy) phthalocyaninato] Zn (II) (3) and tetra-phenoxy N,N-dimethyl-4-((methylimino) Zn (II) (4) when the encapsulated into silica nanoparticles (SiNPs) followed by conjugation of folic acid (FA). The synthesised complexes and their doped analogues are examined for their PDT activity using MCF-7 cells. All the complexes showed dark toxicity that is >80%. The folic acid conjugates, MPc@SiNPs-FA showed greater photocytoxicity against MCF-7 cells upon irradiation with laser light.
- Full Text:
- Date Issued: 2021
- Authors: Magadla, Aviwe , Babu, Balaji , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185407 , vital:44384 , xlink:href="https://doi.org/10.1016/j.poly.2021.115227"
- Description: This work explores the synthesis, photophysicochemical properties and photodynamic activity (PDT) of tetrakis [N,N’–bis (4-(diethylamino)benzylidene) amino)propan-2-yl)oxy) phthalocyaninato] Zn (II) (3) and tetra-phenoxy N,N-dimethyl-4-((methylimino) Zn (II) (4) when the encapsulated into silica nanoparticles (SiNPs) followed by conjugation of folic acid (FA). The synthesised complexes and their doped analogues are examined for their PDT activity using MCF-7 cells. All the complexes showed dark toxicity that is >80%. The folic acid conjugates, MPc@SiNPs-FA showed greater photocytoxicity against MCF-7 cells upon irradiation with laser light.
- Full Text:
- Date Issued: 2021
Acetophenone substituted phthalocyanines and their graphene quantum dots conjugates as photosensitizers for photodynamic antimicrobial chemotherapy against Staphylococcus aureus
- Openda, Yolande I, Sen, Pinar, Managa, Muthumuni, Nyokong, Tebello
- Authors: Openda, Yolande I , Sen, Pinar , Managa, Muthumuni , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186507 , vital:44506 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.101607"
- Description: This work reports on the synthesis and characterization of novel acetophenone substituted phthalocyanines along with the self-assembled nanoconjugates formed via π-π stacking interaction between the synthesized unmetalated (2), zinc (3) and indium (4) phthalocyanines and graphene quantum dots (GQDs) to form 2@GQDs, 3@GQDs and 4@GQDs. The complexes and conjugates exhibited high singlet oxygen ranging from 0.20 to 0.79 in DMSO for Pcs and nanoconjugates where in all cases, the indium complexes showed the highest singlet oxygen quantum yields. The photodynamic antimicrobial chemotherapy activity of both phthalocyanines and nanoconjugates were tested against Staphylococcus aureus. 4@GQDs was found to be highly effective causing a 9.68 log reduction of the bacteria at 10 μM (based on Pc) when compared to 3.77 log reduction of 3@GQDs.
- Full Text:
- Date Issued: 2020
- Authors: Openda, Yolande I , Sen, Pinar , Managa, Muthumuni , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186507 , vital:44506 , xlink:href="https://doi.org/10.1016/j.pdpdt.2019.101607"
- Description: This work reports on the synthesis and characterization of novel acetophenone substituted phthalocyanines along with the self-assembled nanoconjugates formed via π-π stacking interaction between the synthesized unmetalated (2), zinc (3) and indium (4) phthalocyanines and graphene quantum dots (GQDs) to form 2@GQDs, 3@GQDs and 4@GQDs. The complexes and conjugates exhibited high singlet oxygen ranging from 0.20 to 0.79 in DMSO for Pcs and nanoconjugates where in all cases, the indium complexes showed the highest singlet oxygen quantum yields. The photodynamic antimicrobial chemotherapy activity of both phthalocyanines and nanoconjugates were tested against Staphylococcus aureus. 4@GQDs was found to be highly effective causing a 9.68 log reduction of the bacteria at 10 μM (based on Pc) when compared to 3.77 log reduction of 3@GQDs.
- Full Text:
- Date Issued: 2020
Development of manganese phthalocyanine decorated with silver nanoparticles nanocomposite for improved electrocatalytic oxidation of hydrazine:
- Mpeta, Lekhetho S, Sen, Pinar, Nyokong, Tebello
- Authors: Mpeta, Lekhetho S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148472 , vital:38742 , https://doi.org/10.1016/j.jelechem.2020.114173
- Description: In this study we report on the synthesis of tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl) phenoxy phthalocyaninato] manganese (III) chloride (MnPc). The MnPc was first used to modify a glassy carbon electrode, followed by the growth of silver nanoparticles (AgNPs) onto the MnPc modified electrode to form MnPc-AgNPs modified electrode. The modified electrode was characterized using cydic voltammetry, chronoamperometry, scanning electrochemical microscopy and electrochemical impedance spectroscopy. The modified MnPc-AgNPs electrode was employed for the detection of hydrazine. The MnPc-AgNPs gave better current responses for electrooxidation of hydrazine relative to MnPc and AgNPs, individually. The catalytic rate constant was 1.90 x 10(5 )M(-1) S-1, with the detection limit (LoD) of 2.42 pM (using 3 sigma notation), and sensitivity of 61.56 mu A mM(-1), for MnPc-AgNPs. (C) 2020 Elsevier B.V. All rights reserved.
- Full Text:
- Date Issued: 2020
- Authors: Mpeta, Lekhetho S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/148472 , vital:38742 , https://doi.org/10.1016/j.jelechem.2020.114173
- Description: In this study we report on the synthesis of tetrakis [4-(4-(5-chloro-1H-benzo [d]imidazol-2-yl) phenoxy phthalocyaninato] manganese (III) chloride (MnPc). The MnPc was first used to modify a glassy carbon electrode, followed by the growth of silver nanoparticles (AgNPs) onto the MnPc modified electrode to form MnPc-AgNPs modified electrode. The modified electrode was characterized using cydic voltammetry, chronoamperometry, scanning electrochemical microscopy and electrochemical impedance spectroscopy. The modified MnPc-AgNPs electrode was employed for the detection of hydrazine. The MnPc-AgNPs gave better current responses for electrooxidation of hydrazine relative to MnPc and AgNPs, individually. The catalytic rate constant was 1.90 x 10(5 )M(-1) S-1, with the detection limit (LoD) of 2.42 pM (using 3 sigma notation), and sensitivity of 61.56 mu A mM(-1), for MnPc-AgNPs. (C) 2020 Elsevier B.V. All rights reserved.
- Full Text:
- Date Issued: 2020
Direct nonlinear optical absorption measurements of asymmetrical zinc (II) phthalocyanine when covalently linked to semiconductor quantum dots
- Mgidlana, Sithi, Sen, Pinar, Nyokong, Tebello
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186056 , vital:44459 , xlink:href="https://doi.org/10.1016/j.molstruc.2020.128729"
- Description: We report on nonlinear optical properties of tris[(4-tert-butyl)-2-thio (phenyl)acetic acid (1) and tris(dimethyl-5-(3,4-phenoxy) isophthalate (2) phthalocyaninato zinc (II) complexes. The synthesized complexes were covalently conjugated to glutathione-capped CdTe/ZnSe/ZnO quantum dots. We observed an increase in triplet quantum yield with corresponding decrease in fluorescence quantum yield of conjugates compared to Pc complexes alone. Z-scan technique was employed to experimentally test the nonlinear optical response of complexes and nanoconjugates in solution at laser excitation wavelength of 532 nm with 7 ns pulse. Nonlinear absorption coefficient, third-order optical susceptibility and optical limiting threshold of the materials were obtained from the Z-scan data. The nonlinear absorption parameters improved in the presence of CdTe/ZnSe/ZnO, with 1 and 1-CdTe/ZnSe/ZnO, giving the best results due to the presence of electron donating substituents.
- Full Text:
- Date Issued: 2020
- Authors: Mgidlana, Sithi , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186056 , vital:44459 , xlink:href="https://doi.org/10.1016/j.molstruc.2020.128729"
- Description: We report on nonlinear optical properties of tris[(4-tert-butyl)-2-thio (phenyl)acetic acid (1) and tris(dimethyl-5-(3,4-phenoxy) isophthalate (2) phthalocyaninato zinc (II) complexes. The synthesized complexes were covalently conjugated to glutathione-capped CdTe/ZnSe/ZnO quantum dots. We observed an increase in triplet quantum yield with corresponding decrease in fluorescence quantum yield of conjugates compared to Pc complexes alone. Z-scan technique was employed to experimentally test the nonlinear optical response of complexes and nanoconjugates in solution at laser excitation wavelength of 532 nm with 7 ns pulse. Nonlinear absorption coefficient, third-order optical susceptibility and optical limiting threshold of the materials were obtained from the Z-scan data. The nonlinear absorption parameters improved in the presence of CdTe/ZnSe/ZnO, with 1 and 1-CdTe/ZnSe/ZnO, giving the best results due to the presence of electron donating substituents.
- Full Text:
- Date Issued: 2020
Enhanced Light-Driven Antimicrobial Activity of Cationic Poly (oxanorbornene) s by Phthalocyanine Incorporation into Polymer as Pendants
- Ahmetali, Erem, Sen, Pinar, Süer, N Ceren, Aksu, Burak, Nyokong, Tebello, Eren, Tarik, Sener, Kasim M
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Aksu, Burak , Nyokong, Tebello , Eren, Tarik , Sener, Kasim M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185976 , vital:44453 , xlink:href=" https://doi.org/10.1002/macp.202000386"
- Description: Amphiphilic poly(oxanorbornene)s are promising synthetic polymers that mimic the structural properties and antimicrobial functions of naturally occurring antimicrobial peptides. Here, poly(oxanorbornene)s bearing pendant zinc(II) phthalocyanine and triphenyl(ethyl) phosphonium functionalities are synthesized by ring-opening metathesis polymerization (ROMP). Fluorescence, singlet oxygen and triplet quantum yields of polymers are measured in dimethyl sulfoxide and aqueous medium. The singlet oxygen quantum yields of copolymers with the highest triphenyl and triethyl phosphonium content are found to be 0.29 and 0.41, respectively. Then, antimicrobial activities of polymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are investigated under both dark and light conditions. Synergistic effect of zinc(II) phthalocyanine and phosphonium-containing poly(oxanorbornene) is observed that the conjugate possessing the most triphenyl phosphonium side chains has the highest activity under light against both gram-positive and gram-negative bacterial strains after 80 min irradiation, reducing the survival of E. coli or S. aureus by 99.9999%. Hemolytic concentrations of the copolymers are found between 8 and 512 µg mL−1. Scanning electron microscopy (SEM) proves that the bacteria membrane deforms after contacting with the biocidal polymer.
- Full Text:
- Date Issued: 2020
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Aksu, Burak , Nyokong, Tebello , Eren, Tarik , Sener, Kasim M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185976 , vital:44453 , xlink:href=" https://doi.org/10.1002/macp.202000386"
- Description: Amphiphilic poly(oxanorbornene)s are promising synthetic polymers that mimic the structural properties and antimicrobial functions of naturally occurring antimicrobial peptides. Here, poly(oxanorbornene)s bearing pendant zinc(II) phthalocyanine and triphenyl(ethyl) phosphonium functionalities are synthesized by ring-opening metathesis polymerization (ROMP). Fluorescence, singlet oxygen and triplet quantum yields of polymers are measured in dimethyl sulfoxide and aqueous medium. The singlet oxygen quantum yields of copolymers with the highest triphenyl and triethyl phosphonium content are found to be 0.29 and 0.41, respectively. Then, antimicrobial activities of polymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are investigated under both dark and light conditions. Synergistic effect of zinc(II) phthalocyanine and phosphonium-containing poly(oxanorbornene) is observed that the conjugate possessing the most triphenyl phosphonium side chains has the highest activity under light against both gram-positive and gram-negative bacterial strains after 80 min irradiation, reducing the survival of E. coli or S. aureus by 99.9999%. Hemolytic concentrations of the copolymers are found between 8 and 512 µg mL−1. Scanning electron microscopy (SEM) proves that the bacteria membrane deforms after contacting with the biocidal polymer.
- Full Text:
- Date Issued: 2020
Investigation of electrocatalytic behaviour of low symmetry cobalt phthalocyanines when clicked to azide grafted carbon electrodes
- Mpeta, Lakethe S, Sen, Pinar, Nyokong, Tebello
- Authors: Mpeta, Lakethe S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186304 , vital:44483 , xlink:href="https://doi.org/10.1016/j.jelechem.2020.113896"
- Description: This work describes the electrochemical properties of low symmetry cobalt phthalocyanines namely, tris-[(4-tert-butylphenoxy)-4-(pent-4-yn-1-yloxy) phthalocyaniato] cobalt (II) (3) and tris-[(4-tert-butylphenoxy)-4-(4-ethybylbenzyl-oxy) phthalocyaniato] cobalt (II) (5). The complexes were characterized by a number of techniques including UV–Vis, mass, and infrared spectra, as well as elemental analysis. The glassy carbon electrodes were first azide functionalized then clicked to low symmetry phthalocyanines. The click reaction was confirmed using X-ray photoelectron spectra. The constructed electrodes showed excellent electrocatalytic activity towards hydrazine oxidation. Oxidation peaks with low potentials of 0.21 V and 0.26 V, for complexes 3 and 5, respectively were obtained. Complex-5 gave a better detection limit of 0.94 μM and electrocatalytic rate constant of 5.6 × 106 M−1 s−1.
- Full Text:
- Date Issued: 2020
- Authors: Mpeta, Lakethe S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186304 , vital:44483 , xlink:href="https://doi.org/10.1016/j.jelechem.2020.113896"
- Description: This work describes the electrochemical properties of low symmetry cobalt phthalocyanines namely, tris-[(4-tert-butylphenoxy)-4-(pent-4-yn-1-yloxy) phthalocyaniato] cobalt (II) (3) and tris-[(4-tert-butylphenoxy)-4-(4-ethybylbenzyl-oxy) phthalocyaniato] cobalt (II) (5). The complexes were characterized by a number of techniques including UV–Vis, mass, and infrared spectra, as well as elemental analysis. The glassy carbon electrodes were first azide functionalized then clicked to low symmetry phthalocyanines. The click reaction was confirmed using X-ray photoelectron spectra. The constructed electrodes showed excellent electrocatalytic activity towards hydrazine oxidation. Oxidation peaks with low potentials of 0.21 V and 0.26 V, for complexes 3 and 5, respectively were obtained. Complex-5 gave a better detection limit of 0.94 μM and electrocatalytic rate constant of 5.6 × 106 M−1 s−1.
- Full Text:
- Date Issued: 2020
New difluoroboron complexes based on N, O-chelated Schiff base ligands: Synthesis, characterization, DFT calculations and photophysical and electrochemical properties
- Sen, Pinar, Mpeta, Lekhetho S, Mack, John, Nyokong, Tebello
- Authors: Sen, Pinar , Mpeta, Lekhetho S , Mack, John , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186207 , vital:44473 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117262"
- Description: The synthesis of new Schiff bases and their dinuclear boron complexes is described, along with their characterization by 1H and 13C NMR, FT-IR, and UV–visible absorption spectroscopy, mass spectrometry, and EDX for elemental analysis. The optical and photophysical properties were examined in terms of their absorption and emission behavior, fluorescence quantum yields and fluorescence lifetimes. The flexible dinuclear boron complexes that are linked by a flexible carbon chain exhibited large Stokes shifts in the range from 92 nm to 115 nm in contrast to BODIPY dyes. Those properties make these complexes precious for applications in fluorescence materials. And also theoretical calculations were obtained by using Density Functional Theory (DFT) methods.
- Full Text:
- Date Issued: 2020
- Authors: Sen, Pinar , Mpeta, Lekhetho S , Mack, John , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186207 , vital:44473 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117262"
- Description: The synthesis of new Schiff bases and their dinuclear boron complexes is described, along with their characterization by 1H and 13C NMR, FT-IR, and UV–visible absorption spectroscopy, mass spectrometry, and EDX for elemental analysis. The optical and photophysical properties were examined in terms of their absorption and emission behavior, fluorescence quantum yields and fluorescence lifetimes. The flexible dinuclear boron complexes that are linked by a flexible carbon chain exhibited large Stokes shifts in the range from 92 nm to 115 nm in contrast to BODIPY dyes. Those properties make these complexes precious for applications in fluorescence materials. And also theoretical calculations were obtained by using Density Functional Theory (DFT) methods.
- Full Text:
- Date Issued: 2020