Challenges in topside ionospheric modelling over South Africa
- Authors: Sibanda, Patrick
- Date: 2010
- Subjects: Ionospheric electron density -- South Africa Neural networks (Computer science) Atmosphere, Upper Ionosphere
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5453 , http://hdl.handle.net/10962/d1005238
- Description: This thesis creates a basic framework and provides the information necessary to create a more accurate description of the topside ionosphere in terms of the altitude variation of the electron density (Ne) over the South African region. The detailed overview of various topside ionospheric modelling techniques, with specific emphasis on their implications for the efforts to model the South African topside, provides a starting point towards achieving the goals. The novelty of the thesis lies in the investigation of the applicabilityof three different techniques to model the South African topside ionosphere: (1) The possibility of using Artificial Neural Network (ANN) techniques for empirical modelling of the topside ionosphere based on the available, however irregularly sampled, topside sounder measurements. The goal of this model was to test the ability of ANN techniques to capture the complex relationships between the various ionospheric variables using irregularly distributed measurements. While this technique is promising, the method did not show significant improvement over the International Reference Ionosphere (IRI) model results when compared with the actual measurements. (2) Application of the diffusive equilibrium theory. Although based on sound physics foundations, the method only operates on a generalised level leading to results that are not necessarily unique. Furthermore, the approach relies on many ionospheric variables as inputs which are derived from other models whose accuracy is not verified. (3) Attempts to complement the standard functional techniques, (Chapman, Epstein, Exponential and Parabolic), with Global Positioning System (GPS) and ionosonde measurements in an effort to provide deeper insights into the actual conditions within the ionosphere. The vertical Ne distribution is reconstructed by linking together the different aspects of the constituent ions and their transition height by considering how they influence the shape of the profile. While this approach has not been tested against actual measurements, results show that the method could be potentially useful for topside ionospheric studies. Due to the limitations of each technique reviewed, this thesis observes that the employment of an approach that incorporates both theoretical onsiderations and empirical aspects has the potential to lead to a more accurate characterisation of the topside ionospheric behaviour, and resulting in improved models in terms of reliability and forecasting ability. The point is made that a topside sounder mission for South Africa would provide the required measured topside ionospheric data and answer the many science questions that this region poses as well as solving a number of the limitations set out in this thesis.
- Full Text:
- Date Issued: 2010
- Authors: Sibanda, Patrick
- Date: 2010
- Subjects: Ionospheric electron density -- South Africa Neural networks (Computer science) Atmosphere, Upper Ionosphere
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:5453 , http://hdl.handle.net/10962/d1005238
- Description: This thesis creates a basic framework and provides the information necessary to create a more accurate description of the topside ionosphere in terms of the altitude variation of the electron density (Ne) over the South African region. The detailed overview of various topside ionospheric modelling techniques, with specific emphasis on their implications for the efforts to model the South African topside, provides a starting point towards achieving the goals. The novelty of the thesis lies in the investigation of the applicabilityof three different techniques to model the South African topside ionosphere: (1) The possibility of using Artificial Neural Network (ANN) techniques for empirical modelling of the topside ionosphere based on the available, however irregularly sampled, topside sounder measurements. The goal of this model was to test the ability of ANN techniques to capture the complex relationships between the various ionospheric variables using irregularly distributed measurements. While this technique is promising, the method did not show significant improvement over the International Reference Ionosphere (IRI) model results when compared with the actual measurements. (2) Application of the diffusive equilibrium theory. Although based on sound physics foundations, the method only operates on a generalised level leading to results that are not necessarily unique. Furthermore, the approach relies on many ionospheric variables as inputs which are derived from other models whose accuracy is not verified. (3) Attempts to complement the standard functional techniques, (Chapman, Epstein, Exponential and Parabolic), with Global Positioning System (GPS) and ionosonde measurements in an effort to provide deeper insights into the actual conditions within the ionosphere. The vertical Ne distribution is reconstructed by linking together the different aspects of the constituent ions and their transition height by considering how they influence the shape of the profile. While this approach has not been tested against actual measurements, results show that the method could be potentially useful for topside ionospheric studies. Due to the limitations of each technique reviewed, this thesis observes that the employment of an approach that incorporates both theoretical onsiderations and empirical aspects has the potential to lead to a more accurate characterisation of the topside ionospheric behaviour, and resulting in improved models in terms of reliability and forecasting ability. The point is made that a topside sounder mission for South Africa would provide the required measured topside ionospheric data and answer the many science questions that this region poses as well as solving a number of the limitations set out in this thesis.
- Full Text:
- Date Issued: 2010
Evaluating the IRI topside model for the South African region: An overview of the modelling techniques
- Sibanda, Patrick, McKinnell, Lee-Anne
- Authors: Sibanda, Patrick , McKinnell, Lee-Anne
- Date: 2009
- Language: English
- Type: text , Article
- Identifier: vital:6810 , http://hdl.handle.net/10962/d1004303
- Description: The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.
- Full Text:
- Date Issued: 2009
- Authors: Sibanda, Patrick , McKinnell, Lee-Anne
- Date: 2009
- Language: English
- Type: text , Article
- Identifier: vital:6810 , http://hdl.handle.net/10962/d1004303
- Description: The representation of the topside ionosphere (the region above the F2 peak) is critical because of the limited experimental data available. Over the years, a wide range of models have been developed in an effort to represent the behaviour and the shape of the electron density (Ne) profile of the topside ionosphere. Various studies have been centred around calculating the vertical scale height (VSH) and have included (a) obtaining VSH from Global Positioning System (GPS) derived total electron content (TEC), (b) calculating the VSH from ground-based ionosonde measurements, (c) using topside sounder vertical Ne profiles to obtain the VSH. One or a combination of the topside profilers (Chapman function, exponential function, sech-squared (Epstein) function, and/or parabolic function) is then used to reconstruct the topside Ne profile. The different approaches and the modelling techniques are discussed with a view to identifying the most adequate approach to apply to the South African region’s topside modelling efforts. The IRI-2001 topside model is evaluated based on how well it reproduces measured topside profiles over the South African region. This study is a first step in the process of developing a South African topside ionosphere model.
- Full Text:
- Date Issued: 2009
Particle precipitation effects on the South African ionosphere
- Authors: Sibanda, Patrick
- Date: 2007
- Subjects: Ionosphere -- South Africa , Precipitation (Chemistry) -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5481 , http://hdl.handle.net/10962/d1005267 , Ionosphere -- South Africa , Precipitation (Chemistry) -- South Africa
- Description: Particle precipitation involves the injection of energetic particles into the ionosphere which could increase the ionisation and conductivity of the upper atmosphere. The goal of this study was to examine the ionospheric response and changes due to particle precipitation in the region over South Africa, using a combination of groundbased and satellite instruments. Particle precipitation events were identified from satellite particle flux measurements of the Defence Meteorological Satellite Program (DMSP). Comprehensive studies were done on the events of 5 April, 2000 and 7 October, 2000. Analysis of the data from the satellite instruments indicates that no particle precipitation was observed over the South African region during these events and that it is unlikely to occur during other such events. To validate the data, methods and tools used in this study, precipitation in the South Atlantic anomaly (SAA) region is used. Satellite ion density measurements revealed that strong density enhancements occurred over the SAA region at satellite altitudes during the precipitation events, but this did not occur in the South African region. The measurements also revealed how the ionisation enhancements in the SAA region correlated with geomagnetic and solar activities. Particle precipitation and convective electric fields are two major magnetospheric energy sources to the upper atmosphere in the auroral and the SAA regions. These increase dramatically during geomagnetic storms and can disturb thermospheric circulation in the atmosphere and alter the rates of production and recombination of the ionised species. Ionosonde observations at Grahamstown, South Africa (33.30S, 26.50E), provided the data to build a picture of the response of the ionosphere over the South African region to particle precipitation during the precipitation events. This analysis showed that, within the confines of the available data, no direct connections between particle precipitation events and disturbances in the ionosphere over this region were revealed.
- Full Text:
- Date Issued: 2007
- Authors: Sibanda, Patrick
- Date: 2007
- Subjects: Ionosphere -- South Africa , Precipitation (Chemistry) -- South Africa
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5481 , http://hdl.handle.net/10962/d1005267 , Ionosphere -- South Africa , Precipitation (Chemistry) -- South Africa
- Description: Particle precipitation involves the injection of energetic particles into the ionosphere which could increase the ionisation and conductivity of the upper atmosphere. The goal of this study was to examine the ionospheric response and changes due to particle precipitation in the region over South Africa, using a combination of groundbased and satellite instruments. Particle precipitation events were identified from satellite particle flux measurements of the Defence Meteorological Satellite Program (DMSP). Comprehensive studies were done on the events of 5 April, 2000 and 7 October, 2000. Analysis of the data from the satellite instruments indicates that no particle precipitation was observed over the South African region during these events and that it is unlikely to occur during other such events. To validate the data, methods and tools used in this study, precipitation in the South Atlantic anomaly (SAA) region is used. Satellite ion density measurements revealed that strong density enhancements occurred over the SAA region at satellite altitudes during the precipitation events, but this did not occur in the South African region. The measurements also revealed how the ionisation enhancements in the SAA region correlated with geomagnetic and solar activities. Particle precipitation and convective electric fields are two major magnetospheric energy sources to the upper atmosphere in the auroral and the SAA regions. These increase dramatically during geomagnetic storms and can disturb thermospheric circulation in the atmosphere and alter the rates of production and recombination of the ionised species. Ionosonde observations at Grahamstown, South Africa (33.30S, 26.50E), provided the data to build a picture of the response of the ionosphere over the South African region to particle precipitation during the precipitation events. This analysis showed that, within the confines of the available data, no direct connections between particle precipitation events and disturbances in the ionosphere over this region were revealed.
- Full Text:
- Date Issued: 2007
- «
- ‹
- 1
- ›
- »