Un-functionalized gold nanoparticles as a simple colorimetric probe for sensitive and selective detection of dopamine
- Authors: Khanyile, Nokuthula , Krause, Rui W M , Vilakazi, Sibulelo , Torto, Nelson
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/195048 , vital:45522 , xlink:href="http://dx.doi.org/10.17159/0379-4350/2019/v72a27"
- Description: A dopamine (DA) colorimetric probe based on the growth and aggregation of un-functionalized gold nanoparticles (AuNPs) is reported. Upon addition of AuNPs to dopamine at various concentrations, the shape, size and colour change of the nanoparticles results in spectral shifts to higher wavelengths and hence colour change is the mode of detection. The colour change can be easily observed by the naked eye from as low as 5.0 nM DA, even under sub-optimal conditions. Under optimal pH conditions the calculated limit of detection was 2.5 nM (3σ). The probe was successfully applied to whole blood sample and showed good selectivity and sensitivity towards DA. The simple, sensitive and selective probe could be an excellent alternative for on-site and immediate detection of DA without the use of instrumentation and would thus be useful for rapid diagnostic applications.
- Full Text:
- Date Issued: 2019
A colorimetric probe for dopamine based on gold nanoparticles-electrospun nanofibre composite
- Authors: Ngomane, Nokuthula , Torto, Nelson , Krause, Rui W M , Vilakazi, Sibulelo
- Date: 2015
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/195407 , vital:45562 , xlink:href="https://doi.org/10.1016/j.matpr.2015.08.036"
- Description: An easily prepared solid state colorimetric probe for detecting the neurotransmitter dopamine (DA) was developed. The probe, in the form of an electrospun Nylon−6 (N6) nanofibre with embedded un−functionalized gold nanoparticles (UF−AuNPs) produces a clear colour change in the presence of a DA that is detectable by the naked eye. Characterisation of the nanofibre using UV/vis spectroscopy and electron microscopy (TEM) confirmed the formation of the AuNPs in the polymer solution, and that the AuNPs were completely encapsulated within the composite nanofibres before exposure to the analytes. The probe exhibited very high sensitivity towards DA resulting in colour change of the composite fibres from purple to navy blue/black even under low concentrations of DA. The probe was also selective to DA since the colour remained unchanged in the presence of commonly encountered interfering species such as ascorbic acid, uric acid, catechol, epinephrine and norepinephrine. Moreover, the colour change was observed rapid, occurring either immediately on contact with higher concentrations (5 x10−4 M) or within about 3−5 min for the lower concentrations (e.g. 5 x10−7 M). Since this probe does not require the use of any instruments, and is both rapid and stable over time, it can be applied in the field by an inexperienced person.
- Full Text:
- Date Issued: 2015
Adsorption and separation of platinum and palladium by polyamine functionalized polystyrene-based beads and nanofibers
- Authors: Fayemi, Omolola E , Ogunlaja, Adeniyi S , Kempgens, Pierre F M , Antunes, Edith M , Torto, Nelson , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241694 , vital:50961 , xlink:href="https://doi.org/10.1016/j.mineng.2013.06.006"
- Description: Adsorption and separation of platinum and palladium chlorido species (PtCl62- and PdCl42-) on polystyrene beads as well as nanofibers functionalized with ammonium centres based on ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA) and tris-(2-aminoethyl)amine (TAEA) are described. The functionalized sorbent materials were characterized by microanalysis, SEM, XPS, BET and FTIR. The surface area of the functionalized fibers was in the range 69–241 m2/g while it was 73–107 m2/g for the beads. The adsorption and loading capacities of the sorption materials were investigated using both the batch and column studies at 1 M HCl concentration. The adsorption studies for both PtCl62- and PdCl42- on the different sorbent materials fit the Langmuir isotherm with R2 values >0.99. The highest loading capacity of Pt and Pd were 7.4 mg/g and 4.3 mg/g respectively for the nanofiber sorbent material based on ethylenediamine (EDA) while the beads with ethylenediamine (EDA) gave 1.0 mg/g and 0.2 mg/g for Pt and Pd respectively. Metals loaded on the sorbent materials were recovered by using 3% m/v thiourea solution as the eluting agent with quantitative desorption efficiency under the selected experimental conditions. Separation of platinum from palladium was partially achieved by selective stripping of PtCl62- with 0.5 M of NaClO4 in 1.0 M HCl while PdCl42- was eluted with 0.5 M thiourea in 1.0 M HCl. Separation of platinum from iridium and rhodium under 1 M HCl concentration was successful on triethylenetriamine (TETA)-functionalized Merrifield beads. This material (M-TETA) showed selectivity for platinum albeit the low loading capacity.
- Full Text:
- Date Issued: 2013
Catalytic oxidation of thioanisole using oxovanadium (IV)‐functionalized electrospun polybenzimidazole nanofibers
- Authors: Walmsley, Ryan S , Hlangothi, Percy , Litwinski, Christian , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/242083 , vital:51000 , xlink:href="https://doi.org/10.1002/app.38067"
- Description: Polybenzimidazole fibers, with an average diameter of 262 nm, were produced by the process of electrospinning. These fibers were used as a solid support material for the immobilization of oxovanadium(IV) which was achieved via a reaction with vanadyl sulfate. The oxovanadium(IV)-functionalized nanofibers were used as heterogeneous catalysts for the oxidation of thioanisole under both batch and pseudo-continuous flow conditions with great success. Under batch conditions near quantitative oxidation of thioanisole was achieved in under 90 min, even after four successive catalytic reactions. Under continuous conditions, excellent conversion of thioanisole was maintained throughout the period studied at flow rates of up to 2 mLh−1. This study, therefore, proposes that electrospun polybenzimidazole nanofibers, with their small diameters, impressive chemical and thermal stability, as well as coordinating benzimidazole group, may be a desirable support material for immobilization of homogeneous catalysts.
- Full Text:
- Date Issued: 2013
Oxovanadium (IV)-containing poly (styrene-co-4′-ethenyl-2-hydroxyphenylimidazole) electrospun nanofibers for the catalytic oxidation of thioanisole
- Authors: Walmsley, Ryan S , Litwinski, Christian , Antunes, Edith M , Hlangothi, Percy , Hosten, Eric C , McCleland, Cedric , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241665 , vital:50959 , xlink:href="https://doi.org/10.1016/j.molcata.2013.07.018"
- Description: The catalytic fibers have been fabricated by the electrospinning of a copolymer of styrene and 2-(2′-hydroxy-4′-ethenylphenyl)imidazole {p(ST-co-VPIM)} followed by a reaction with a methanolic vanadyl solution to afford the oxovanadium(IV)-containing poly(styrene-co-4′-ethenyl-2-hydroxyphenylimidazole) fibers {p(ST-co-VPIM)-VO fibers}. The relationship between polymer concentration and fiber diameter was investigated, and at high concentration (20 wt%) the fibers were quite large (average diameter of 3.8 μm) but as the concentration was reduced fibers of much lower diameter were produced (0.6 μm using 8 wt%). The BET surface area for p(ST-co-VPIM) fibers (0.6 μm diameter) was 47.9 m2 g−1 and functionalization of p(ST-co-VPIM) with vanadyl resulted in an increase in surface area to 60.7 m2 g−1 for p(ST-co-VPIM)-VO. The presence of vanadyl was confirmed by XPS and EPR. The EPR spectral analyses depicted complex speciation of vanadium within these polymer supports. These catalytic fibers were applied under batch and continuous flow conditions for the catalytic oxidation of thioanisole using hydrogen peroxide. The continuous flow method gave excellent and constant conversion throughout the 10 h period studied. The leaching of vanadium from the fiber support was 4% over the 10 h period indicating a significant stability of the material.
- Full Text:
- Date Issued: 2013
The development of catalytic oxovanadium (IV)-containing microspheres for the oxidation of various organosulfur compounds
- Authors: Ogunlaja, Adeniyi S , Khene, Samson M , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2013
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/241783 , vital:50969 , xlink:href="https://doi.org/10.1016/j.apcata.2013.05.004"
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil.
- Full Text:
- Date Issued: 2013
A highly selective and sensitive pyridylazo-2-naphthol-poly (acrylic acid) functionalized electrospun nanofiber fluorescence “turn-off” chemosensory system for Ni 2+
- Authors: Adewuyi, Sheriff , Ondigo, Dezzline A , Zugle, Ruphino , Tshentu, Zenixole R , Nyokong, Tebello , Torto, Nelson
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/246012 , vital:51428 , xlink:href="https://doi.org/10.1039/C2AY25182E"
- Description: A fluorescent nanofiber probe for the determination of Ni2+ was developed via the electrospinning of a covalently functionalized pyridylazo-2-naphthol-poly(acrylic acid) polymer. Fluorescent nanofibers with diameters in the range 230–800 nm were produced with uniformly dispersed fluorophores. The excitation and emission fluorescence were at wavelengths 479 and 557 nm respectively, thereby exhibiting a good Stokes' shift. This Ni2+ probe that employs fluorescence quenching in a solid receptor–fluorophore system exhibited a good correlation between the fluorescence intensity and nickel concentration up to 1.0 μg mL−1 based on the Stern–Volmer mechanism. The probe achieved a detection limit (3δ/S) of 0.07 ng mL−1 and a precision, calculated as a relative standard deviation (RSD) of more than 4% (n = 8). The concentration of Ni2+ in a certified reference material (SEP-3) was found to be 0.8986 μg mL−1, which is significantly comparable with the certified value of 0.8980 μg mL−1. The accuracy of the determinations, expressed as a relative error between the certified and the observed values of certified reference groundwater was ≤0.1%. The versatility of the nanofiber probe was demonstrated by affording simple, rapid and selective detection of Ni2+ in the presence of other competing metal ions by direct analysis, without employing any further sample handling steps.
- Full Text:
- Date Issued: 2012
An ion-imprinted polymer for the selective extraction of mercury(II) ions in aqueous media
- Authors: Batlokwa, Bareki Shima , Chimuka, Luke , Tshentu, Zenixole R , Cukrowska, Ewa , Torto, Nelson
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6566 , http://hdl.handle.net/10962/d1004125
- Description: A double-imprinted polymer exhibiting high sensitivity for mercury(II) in aqueous solution is presented. Polymer particles imprinted with mercury(II) were synthesised by copolymerising the functional and cross-linking monomers, N’–[3– (Trimethoxysilyl)–propyl]diethylenetriamine (TPET) and tetraethylorthosilicate (TEOS). A double-imprinting procedure employing hexadecyltrimethylammonium bromide (CTAB), as a second template to improve the efficiency of the polymer, was adopted. The imprinted polymer was characterised by FTIR, scanning electron microscopy (SEM) and the average size determined by screen analysis using standard test sieves. Relative selective coefficients (k`) of the imprinted polymer evaluated from selective binding studies between Hg2+ and Cu2+ or Hg2+ and Cd2+ were 10 588 and 3 147, respectively. These values indicated highly-favoured Hg2+ extractions over the 2 competing ions. The results of spiked and real water samples showed high extraction efficiencies of Hg2+ ions, (over 84%) as evaluated from the detected unextracted Hg2+ ions by ICP-OES. The method exhibited a dynamic response concentration range for Hg2+ between 0.01 and 20 μg/mℓ, with a detection limit (LOD, 3σ) of 0.000036 μg/mℓ (36 ng/ℓ) that meets the monitoring requirements for the USA EPA of 2 000 ng/ℓ for Hg2+ in drinking water. Generally, the data (n=10) had percentage relative standard deviations (%RSD) of less than 4%. Satisfactory results were also obtained when the prepared sorbent was applied for the pre-concentration of Hg2+ from an aqueous certified reference material. These findings indicate that the double-imprinted polymer has potential to be used as an efficient extraction material for the selective pre–concentration of mercury(II) ions in aqueous environments.
- Full Text:
- Date Issued: 2012
Imidazole-functionalized polymer microspheres and fibers–useful materials for immobilization of oxovanadium (IV) catalysts
- Authors: Walmsley, Ryan S , Ogunlaja, Adeniyi S , Coombes, Matthew J , Chidawanyika, Wadzanai J U , Litwinski, Christian , Torto, Nelson , Nyokong, Tebello , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/246041 , vital:51431 , xlink:href="https://doi.org/10.1039/C2JM15485D"
- Description: Both polymer microspheres and microfibers containing the imidazole functionality have been prepared and used to immobilize oxovanadium(IV). The average diameters and BET surface areas of the microspheres were 322 μm and 155 m2 g−1 while the fibers were 1.85 μm and 52 m2 g−1, respectively. XPS and microanalysis confirmed the incorporation of imidazole and vanadium in the polymeric materials. The catalytic activity of both materials was evaluated using the hydrogen peroxide facilitated oxidation of thioanisole. The microspheres were applied in a typical laboratory batch reactor set-up and quantitative conversions (>99%) were obtained in under 240 min with turn-over frequencies ranging from 21.89 to 265.53 h−1, depending on the quantity of catalyst and temperature. The microspherical catalysts also proved to be recyclable with no drop in activity being observed after three successive reactions. The vanadium functionalized fibers were applied in a pseudo continuous flow set-up. Factors influencing the overall conversion and product selectivity, including flow rate and catalyst quantity, were investigated. At flow rates of 1–4 mL h−1 near quantitative conversion was maintained over an extended period. Keeping the mass of catalyst constant (0.025 g) and varying the flow rate from 1–6 mL h−1 resulted in a shift in the formation of the oxidation product methyl phenyl sulfone from 60.1 to 18.6%.
- Full Text:
- Date Issued: 2012
Oxovanadium (IV)-catalysed oxidation of dibenzothiophene and 4, 6-dimethyldibenzothiophene
- Authors: Ogunlaja, Adeniyi S , Chidawanyika, Wadzanai J U , Antunes, Edith M , Fernandes, Manuel A , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/246025 , vital:51429 , xlink:href="https://doi.org/10.1039/C2DT31433A"
- Description: The reaction between [VIVOSO4] and the tetradentate N2O2-donor Schiff base ligand, N,N-bis(o-hydroxybenzaldehyde)phenylenediamine (sal-HBPD), obtained by the condensation of salicylaldehyde and o-phenylenediamine in a molar ratio of 2 : 1 respectively, resulted in the formation of [VIVO(sal-HBPD)]. The molecular structure of [VIVO(sal-HBPD)] was determined by single crystal X-ray diffraction, and confirmed the distorted square pyramidal geometry of the complex with the N2O2 binding mode of the tetradentate ligand. The formation of the polymer-supported p[VIVO(sal-AHBPD)] proceeded via the nitrosation of sal-HBPD, followed by the reduction with hydrogen to form an amine group that was then linked to Merrifield beads followed by the reaction with [VIVOSO4]. XPS and EPR were used to confirm the presence of oxovanadium(IV) within the beads. The BET surface area and porosity of the heterogeneous catalyst p[VIVO(sal-AHBPD)] were found to be 6.9 m2 g−1 and 180.8 Å respectively. Microanalysis, TG, UV-Vis and FT-IR were used for further characterization of both [VIVO(sal-HBPD)] and p[VIVO(sal-AHBPD)]. Oxidation of dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was investigated using [VIVO(sal-HBPD)] and p[VIVO(sal-AHBPD)] as catalysts. Progress for oxidation of these model compounds was monitored with a gas chromatograph fitted with a flame ionization detector. The oxidation products were characterized using gas chromatography-mass spectrometry, microanalysis and NMR. Dibenzothiophene sulfone (DBTO2) and 4,6-dimethyldibenzothiophene sulfone (4,6-DMDBTO2) were found to be the main products of oxidation. Oxovanadium(IV) Schiff base microspherical beads, p[VIVO(sal-AHBPD)], were able to catalyse the oxidation of sulfur in dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) to a tune of 88.0% and 71.8% respectively after 3 h at 40 °C. These oxidation results show promise for potential application of this catalyst in the oxidative desulfurization of crude oils.
- Full Text:
- Date Issued: 2012
Pre-concentration of toxic metals using electrospun amino-functionalized nylon-6 nanofibre sorbent
- Authors: Darko, Godfrey , Sobola, Abdullahi O , Adewuyi, Sheriff , Okonkwo, J O , Torto, Nelson
- Date: 2012
- Language: English
- Type: Article
- Identifier: vital:6571 , http://hdl.handle.net/10962/d1004134
- Description: This paper presents a new approach for pre-concentrating toxic metals (As, Cd, Ni and Pb) in aqueous environments using an amino-functionalized electrospun nanofibre sorbent. The sorbent, composed of nanofibres of average diameter 80 ± 10 nm and specific surface area of 58m2 g–1, exhibited fast adsorption kinetics (<20 min) for As, Cd, Ni and Pb. The optimalpHfor the uptake of As, Cd, Ni and Pb were 5.5, 6.0, 6.5 and 11, respectively. The adsorption process best fitted the Freundlich isothermand followed the first-order kinetics. The highest pre-concentration achieved using the sorbent was 41.99 (Ni in treated wastewater). The capacity of the sorbent to pre-concentrate the toxic metals was compared with those of aqua regia and HNO3+H2O2 digestions. The pre-concentration factors achieved for Cd in river water samples can be ranked as aqua regia digestion (0.73) > adsorption (0.34)>HNO3+H2O2 (0.23) digestion.Asimilar trend was observed for Ni in river water as well as Ni andCdin tap water samples. Pb ions in the river water samples were pre-concentrated slightly better using the two digestion methods pre-concentration factors ~22) compared to adsorption method (pre-concentration factor ~21). The use of the electrospun amino-functionalized nanofibre sorbent presentsanefficientand cost-effective alternative for pre-concentration of toxic metals inaqueousenvironments.
- Full Text:
- Date Issued: 2012
Syntheses, protonation constants and antimicrobial activity of 2-substituted N-alkylimidazole derivatives
- Authors: Kleyi, Phumelele , Walmsley, Ryan S , Gundhla, Isaac Z , Walmsley, Tara A , Jauka, Tembisa I , Dames, Joanna F , Walker, Roderick B , Torto, Nelson , Tshentu, Zenixole R
- Date: 2012
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/184066 , vital:44165 , xlink:href="https://www.ajol.info/index.php/sajc/article/view/123858"
- Description: A series of N-alkylimidazole-2-carboxylic acid, N-alkylimidazole-2-carboxaldehyde and N-alkylimidazole-2-methanol derivatives [alkyl = benzyl, methyl, ethyl, propyl, butyl, heptyl, octyl and decyl] have been synthesized and the protonation constants determined. The antimicrobial properties of the compounds were tested against Gram-negative (Escherichi coli), Gram-positive (Staphylococcus aureus and Bacillus subtilis subsp. spizizenii) bacterial strains and yeast (C. albicans). Both the disk diffusion and broth microdilution methods for testing the antimicrobial activity showed that N-alkylation of imidazole with longer alkyl chains and the substitution with low pKa group at 2-position resulted in enhanced antimicrobial activity. Particularly, the N-alkylimidazole-2-carboxylic acids exhibited the best antimicrobial activity due to the low pKa of the carboxylic acid moiety. Generally, all the N-alkylimidazole derivatives were most active against the Gram-positive bacteria [S. aureus (MIC = 5–160 µg mL–1) and B. subtilis subsp. spizizenii (5–20 µg mL–1)], with the latter more susceptible. All the compounds showed poor antimicrobial activity against both Gram-negative (E. coli, MIC = 0.15 to >2500 µg mL–1) bacteria and all the compounds were inactive against the yeast (Candida albicans).
- Full Text:
- Date Issued: 2012
Dimethylglyoxime based ion-imprinted polymer for the determination of Ni(II) ions from aqueous samples
- Authors: Rammika, Modise , Darko, Godfrey , Tshentu, Zenixole R , Sewry, Joyce D , Torto, Nelson
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6590 , http://hdl.handle.net/10962/d1004173
- Description: A Ni(II)-dimethylglyoxime ion-imprinted polymer {Ni(II)-DMG IIP} was synthesised by the bulk polymerisation method. The morphology of the Ni(II)-DMG IIP and non-imprinted polymer were observed by scanning electron microscopy and the chemical structures were evaluated by infrared spectroscopy. Selectivity of the Ni(II)-DMG IIP was studied by analysing, using an inductively coupled plasma-optical emission spectrometer, for Ni(II) ions that were spiked with varying concentrations of Co(II), Cu(II), Zn(II), Pd(II), Fe(II), Ca(II), Mg(II), Na(I) and K(I) in aqueous samples. The studies revealed Ni(II) recoveries ranging from 93 to 100% in aqueous solutions with minimal interference from competing ions. Enrichment factors ranged from 2 to 18 with a binding capacity of 120 μg∙g−1. Co(II) was the only ion found to slightly interfere with the determination of Ni(II). Selectivity studies confirmed that the Ni(II)-DMG IIP had very good selectivity, characterised by %RSD of less than 5%. The limits of detection and quantification were 3x10-4 μg∙mℓ−1 and 9x10-4 μg∙mℓ−1, respectively. The accuracy of the method was validated by analysing a custom solution of certified reference material (SEP-3) and the concentration of Ni(II) obtained was in close agreement with the certified one. The Ni(II)-DMG IIP was successfully employed to trap Ni(II) ions from a matrix of sea, river and sewage water. It is believed that the Ni(II)-DMG IIP has potential to be used as sorbent material for pre-concentration of Ni(II) ions from aqueous solutions by solid-phase extraction.
- Full Text:
- Date Issued: 2011
Incorporation of Ni(II)-dimethylglyoxime ion-imprinted polymer into electrospun polysulphone nanofibre for the determination of Ni(II) ions from aqueous samples
- Authors: Rammika, Modise , Darko, Godfrey , Torto, Nelson
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6589 , http://hdl.handle.net/10962/d1004172
- Description: Ni(II)-dimethylglyoxime ion-imprinted polymer (Ni(II)-DMG IIP) was encapsulated in polysulphone and electrospun into nanofibres with diameters ranging from 406 to 854 nm. The structures of the Ni(II)-DMG encapsulated-IIP nanofibre, non-imprinted encapsulated-polymer nanofibre and polysulphone nanofibre mats were observed by scanning electron microscopy and evaluated by infrared spectroscopy. Electrospinning increased the specific surface area of the Ni(II)-DMG encapsulated-IIP nanofibre mats, as was evidenced by the low masses of the Ni(II)-DMG encapsulated-IIP nanofibre mats used. The accuracy of the method was validated by analysing a custom solution of certified reference material (SEP-3); the concentration of Ni(II) obtained was close to the certified one. The limit of detection was found to be 4.0x10-4 μg∙mℓ−1 while the limit of quantification was found to be 1.2x10-3 μg∙mℓ−1. The recovery of Ni(II) achieved using the Ni(II)-DMG imprinted nanofibre mats in water samples was found to range from 83 to 89%, while that of non-imprinted nanofibre mats was found to range from 59 to 65%, and that of polysulphone from 55 to 62%.
- Full Text:
- Date Issued: 2011
Optimal template removal from molecularly imprinted polymers by pressurized hot water extraction
- Authors: Batlokwa, Bareki Shima , Mokgadi, Janes , Nyokong, Tebello , Torto, Nelson
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/247813 , vital:51620 , xlink:href="https://doi.org/10.1007/s10337-010-1884-3"
- Description: An optimal extraction method for the removal of templates from molecularly imprinted polymers (MIPs) is presented. The extraction method is based on pressurized hot water extraction (PHWE). PHWE was evaluated by application to three distinctly colored MIPs for chlorophyll (green), quercetin (yellow) and phthalocynine (dark blue) with subsequent monitoring of template removal and template bleeding by an ultraviolet spectrophotometer. The templates were washed-off and the extraction efficiency (EE) was compared to that of soxhlet and ultrasonic extraction methods. PHWE employed hot water at an optimal temperature of 220 °C, pressure of 50 bars and flow rate of 2 mL min−1 to thoroughly wash-off the respective templates from their MIPs. The EE evaluated for PHWE was over 99.6% for all the MIPs with no subsequent or minimal template bleeding (more than 0.01%). The washing procedure was simple and relatively fast as it was achieved in 70 min at the most. At 95% confidence level (n = 3), soxhlet and ultrasonic recorded EE that was not significantly different (more than 94.5% in all cases) from that of PHWE (less than 99.6% in all cases). Soxhlet and ultrasonic had washing procedures that were slower (over 18 h) and employed large quantities (400 mL) of organic solvents modified with acids. The percentage relative standard deviations (%RSD) for the EE and recovery results were less than 2.3% in all cases indicating the high reproducibility of the method. Overall, the three methods performed comparably in extracting templates. PHWE seems to be the method of choice as it employed water which poses no environmental threat.
- Full Text:
- Date Issued: 2011
Photophysical and photochemical behavior of electrospun fibers of a polyurethane polymer chemically linked to lutetium carboxyphenoxy phthalocyanine
- Authors: Zugle, Ruphino , Litwinski, Christian , Torto, Nelson , Nyokong, Tebello
- Date: 2011
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/248428 , vital:51685 , xlink:href="https://doi.org/10.1039/C1NJ20126C"
- Description: A phthalocyanine complex of lutetium substituted with four peripherally substituted 4-carboxyphenoxy groups was synthesized using cyclotetramerisation reaction. Its structure was elucidated using conventional spectroscopic methods and elemental analysis. The spectral behavior of the complex was studied in DMF solution and in a solid polyurethane fiber matrix. The UV-Visible spectrum showed a red shift in its Q-band maximum absorption within the fiber as compared to that in solution. The triplet quantum yield in DMF was determined to be 0.51 with a lifetime of 2.7 μs and a singlet oxygen quantum yield of 0.33 with a lifetime of 19.85 μs in the same solvent. The functionalized phthalocyanine fiber could be a promising fabric material for applications such as self-disinfecting in wound dressing. A method based on the conversion of ADMA was used to estimate the singlet oxygen quantum yield of the Pc in the hybrid fiber. An estimated singlet oxygen quantum yield value of 0.11 in aqueous medium was obtained. The fluorescence quantum yield of the Pc was found to be 0.01 with a lifetime of 3.20 ns in DMF.
- Full Text:
- Date Issued: 2011
Selective removal of chromium (VI) from sulphates and other metal anions using an ion-imprinted polymer
- Authors: Pakade, Vusumzi E , Cukrowska, Ewa , Darkwa, James , Torto, Nelson , Chimuka, Luke
- Date: 2011
- Language: English
- Type: Article
- Identifier: vital:6588 , http://hdl.handle.net/10962/d1004171
- Description: A linear copolymer was prepared from 4-vinylpyridine and styrene. An ion-imprinted polymer (IIP) specific for Cr (VI) adsorption was prepared by copolymerisation of the quaternised linear copolymer (quaternised with 1,4-chlorobutane), 2-vinylpyridine functional monomer and ethylene glycol dimethacrylate (EGDMA), as the cross-linking monomer, in the presence of 1,1’-azobis(cyclohexanecarbonitrile) as initiator. Ammonium dichromate and aqueous methanol were used as a template and porogenic solvent, respectively. Leaching of the chromate template from the polymer particles was achieved with successive stirring of the ion-imprinted polymer (IIP) particles in 4 M HNO3 solutions to obtain leached materials, which were then used for selective rebinding of Cr (VI) ions from aqueous solutions. Similarly, the non-imprinted polymer/ control polymer (NIP/CP) material was also prepared under exactly the same conditions as the IIP but without the chromate anion template. Various parameters, such as solution pH, initial concentration, aqueous phase volume, sorbent dosage, contact time and leaching solution volumes, were investigated. Scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, BET surface area and pore size analysis were used for the characterisation of IIP (both unleached and leached) and CP materials. Optimal parameters were as follows: solution pH, 3; contact time, 120 min; eluent, 20 mℓ of 0.1 M NaOH; and sorbent amount, 125 mg. Maximum retention capacity of IIP and CP was 37.58 and 25.44 mg∙g-1, respectively. The extraction efficiencies of the IIP and CP were compared using a batch and SPE mode of extraction. In the absence of high concentrations of ions, especially sulphate ions, both CP and IIP demonstrated no differences in binding of Cr (VI), which was almost 100%. However, in the presence of high concentrations of sulphate ions, the selectivity on the CP completely collapsed. The study clearly demonstrates the suitably of the developed IIP for selective extraction of Cr (VI) in complex samples such as those from acid mine drainage. The selectivity was also compared by direct injection of the real-world sample, both spiked and non-spiked, into that obtained after IIP selective extraction. Despite the method’s very low detection limits for direct injection (below 1 μg∙ℓ-1), no Cr (VI) was obtained. However, after IIP selective extraction, spiked Cr (VI) was detected in the spiked sample.
- Full Text:
- Date Issued: 2011
Recent progress in electrochemical oxidation of saccharides at gold and copper electrodes in alkaline solutions
- Authors: Torto, Nelson
- Date: 2009
- Language: English
- Type: Article
- Identifier: vital:6599 , http://hdl.handle.net/10962/d1004348
- Description: This article reviews the progress made in the past 10 years, on electrochemical oxidation of saccharides in alkaline media for gold and copper electrodes. The mechanism and processes associated with the electrochemical oxidation of saccharides at native and surface coated electrodes continues to be of great interest. Despite the effort and various mechanisms proposed, still the need for an electrochemically active material that understands the complexity associated with saccharides continues to increase as their detection poses a challenge for bioanalytical chemistry and liquid chromatography.
- Full Text:
- Date Issued: 2009
The development of catalytic oxovanadium(IV)-containing microspheres for the oxidation of various organosulfur compounds
- Authors: Ogunlaja, Adeniyi S , Khene, M Samson , Antunes, Edith M , Nyokong, Tebello , Torto, Nelson , Tshentu, Zenixole R
- Language: English
- Type: Article
- Identifier: vital:7324 , http://hdl.handle.net/10962/d1020574
- Description: The development of poly[allylSB-co-EGDMA] beads containing a tetradentate ligand was achieved via suspension polymerization. The catalyst poly[allylSB-co-EGDMA]-VO was synthesized by reacting VIVOSO4 with poly[allylSB-co-EGDMA]. XPS and EPR were used to confirm the presence of vanadium (V4+) on the beads. The synthesized catalyst (poly[allylSB-co-EGDMA]-VO) was found to have a BET surface area of 22 m2 g−1 and porosity of 135 Å, with the atomic force microscopy (AFM) showing more insight on the porous nature of the beads. Oxidation of thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) was carried out using tert-butyl hydroperoxide (t-BuOOH) as oxidant. An overall conversion of 60%, 82%, 98% and 87% was achieved for thiophene (TH), benzothiophene (BT), dibenzothiophene (DBT) and 4,6 dimethyldibenzothiophene (4,6-DMDBT) respectively at higher (t-BuOOH) to substrate ratio and at a temperature of 40 °C. The efficient oxidation of the various organosulfur compounds presents potential for the possible application of this catalyst in oxidative desulfurization (ODS) of crude oil. , Original publication is available at http://dx.doi.org/10.1016/j.apcata.2013.05.004
- Full Text: false