Combination of photodynamic antimicrobial chemotherapy and ciprofloxacin to combat S. aureus and E. coli resistant biofilms
- Openda, Yolande Ikala, Nyokong, Tebello
- Authors: Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360384 , vital:65084 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103142"
- Description: Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
- Full Text:
- Date Issued: 2023
- Authors: Openda, Yolande Ikala , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360384 , vital:65084 , xlink:href="https://doi.org/10.1016/j.pdpdt.2022.103142"
- Description: Photodynamic antimicrobial chemotherapy (PACT) coupled with an antibiotic, ciprofloxacin (CIP), was investigated using two indium metallated cationic photosensitizers, a porphyrin (1) and a phthalocyanine (2). Applying PACT followed by the antibiotic treatment led to a remarkable reduction in the biofilm cell survival of two antibiotic-resistant bacterial strains, S. aureus (Gram-positive) and E. coli (Gram-nenative). Treating both bacteria strains with PACT alone showed no significant activity at 32 µM with 15 min irradiation, while CIP alone exhibited a minimum biofilm inhibition concentration (MBIC) at 4 and 8 µg/mL on S. aureus and E. coli, respectively following 24 h incubation. The combined treatment resulted in the complete eradication of the matured biofilms with high log10 reduction values of 7.05 and 7.20 on S. aureus and E. coli, respectively, at low concentrations. It was found that 15 min PACT irradiation of 8 µM of complexes (1 and 2) combined with 2 µg/mL of CIP have a 100% reduction of the resistant S. aureus biofilms. Whereas the total killing of E. coli was obtained when combining 8 µM of complex 1 and 16 µM of complex 2 both combined with 4 µg/mL of CIP.
- Full Text:
- Date Issued: 2023
Photoantimicrobial activity of Schiff-base morpholino phthalocyanines against drug resistant micro-organisms in their planktonic and biofilm forms
- Sindelo, Azole, Sen, Pinar, Nyokong, Tebello
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
- Authors: Sindelo, Azole , Sen, Pinar , Nyokong, Tebello
- Date: 2023
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/360437 , vital:65088 , xlink:href="https://doi.org/10.1016/j.pdpdt.2023.103519"
- Description: Antimicrobial photodynamic inactivation (aPDI) is a treatment for the eradication of drug-resistant micro-organisms. One of the advantages of this technique, is that there is minimal possibility of microbial resistance. Hence, herein, the preparation and characterization of novel neutral and cationic morpholine containing Schiff base phthalocyanines are reported. The cationic complexes gave moderate singlet oxygen quantum yields (ΦΔ) of ∼0.2 in aqueous media. Conversely, the neutral complexes generated very low ΦΔ values making them very poor candidates for antimicrobial studies. The cationic phthalocyanines showed excellent photodynamic activity against planktonic cells of all micro-organisms (Candida albicans, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, Salmonella enterica subspecies enterica serovar Choleraesuis, vancomycin-resistant Enterococcus faecium, and methicillin-resistant Staphylococcus aureus). The efficiency of aPDI was shown to be both concentration and light-dose-dependent. Mono biofilms were susceptible when treated with 200 µM of cationic Pcs at 108 J/cm2. However, ∼10% of the mixed biofilm survived after treatment.
- Full Text:
- Date Issued: 2023
Electrocatalytic activity of benzothiazole substituted cobalt phthalocyanine in the presence of detonation nanodiamonds
- Ncwane, Lunathi, Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Ncwane, Lunathi , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295753 , vital:57375 , xlink:href="https://doi.org/10.1016/j.diamond.2022.109319"
- Description: This work reports on the synthesis and electrochemical sensing properties of benzothiazole substituted cobalt phthalocyanine (CoPc) when π-π stacked on detonation nanodiamonds (to form CoPc-DNDs(ππ). The synthesized materials were characterized using UV–visible, mass, Fourier transform infrared, and Raman spectroscopies as well as transmission electron microscopy and dynamic light scattering. The electrochemical studies were conducted using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Hydrazine was utilized as an analyte of interest, due to its mutagenic and carcinogenic effects. Glassy carbon electrodes (GCE) were modified with DNDs, CoPc, and CoPc-DNDs(ππ) represented as GCE/DNDs, GCE/CoPc and GCE/ CoPc-DNDs(ππ). GCE was also modified sequential addition of the CoPc and DNDs onto the GCE, represented as GCE/CoPc-DNDs(seq) when CoPc is placed before DNDs on the electrode and GCE/DNDs-CoPc(seq) when DNDs are placed before CoPc, where seq represents sequential. GCE/CoPc-DNDs(ππ) electrode gave better results in terms of limit of detection (1.68 μM), sensitivity (9.59 μA.mM−1) and catalytic rate constant (1.25 × 106 M−1 s−1).
- Full Text:
- Date Issued: 2022
- Authors: Ncwane, Lunathi , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295753 , vital:57375 , xlink:href="https://doi.org/10.1016/j.diamond.2022.109319"
- Description: This work reports on the synthesis and electrochemical sensing properties of benzothiazole substituted cobalt phthalocyanine (CoPc) when π-π stacked on detonation nanodiamonds (to form CoPc-DNDs(ππ). The synthesized materials were characterized using UV–visible, mass, Fourier transform infrared, and Raman spectroscopies as well as transmission electron microscopy and dynamic light scattering. The electrochemical studies were conducted using cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. Hydrazine was utilized as an analyte of interest, due to its mutagenic and carcinogenic effects. Glassy carbon electrodes (GCE) were modified with DNDs, CoPc, and CoPc-DNDs(ππ) represented as GCE/DNDs, GCE/CoPc and GCE/ CoPc-DNDs(ππ). GCE was also modified sequential addition of the CoPc and DNDs onto the GCE, represented as GCE/CoPc-DNDs(seq) when CoPc is placed before DNDs on the electrode and GCE/DNDs-CoPc(seq) when DNDs are placed before CoPc, where seq represents sequential. GCE/CoPc-DNDs(ππ) electrode gave better results in terms of limit of detection (1.68 μM), sensitivity (9.59 μA.mM−1) and catalytic rate constant (1.25 × 106 M−1 s−1).
- Full Text:
- Date Issued: 2022
Electrochemical detection of human epidermal growth factor receptor 2 using an aptamer on cobalt phthalocyanines–Cerium oxide nanoparticle conjugate
- Centane, Sixolile, Mgidlana, Sithi, Openda, Yolanda, Nyokong, Tebello
- Authors: Centane, Sixolile , Mgidlana, Sithi , Openda, Yolanda , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/299835 , vital:57859 , xlink:href="https://doi.org/10.1016/j.bioelechem.2022.108146"
- Description: The role of the biointerface design towards the development of an impedimetric biosensor for the electrochemical detection of human epidermal growth factor receptor 2 (HER2) is investigated. Two novel cobalt phthalocyanines: cobalt tetraphenyl acetic acid phthalocyanine and cobalt tetraphenyl propionic acid phthalocyanine are compared as signal amplifiers and immobilization platforms of the HB5 aptamer towards the electrochemical detection of HER2. In addition, the phthalocyanines are coupled with the metal based cerium oxide nanoparticles. The efficiency of each electrode modification step and the performance of the constructed aptasensors were assessed by impedance spectroscopy. The aptasensors showed very low limit of detection values (all less than 0.2 ng/mL) with high sensitivity and stability. Furthermore, the aptasensors showed very good performance even in human serum samples. Considering these results, the aptasensors demonstrate great potential for improved monitoring of human epidermal growth factor receptor 2 levels for the management of breast cancers.
- Full Text:
- Date Issued: 2022
- Authors: Centane, Sixolile , Mgidlana, Sithi , Openda, Yolanda , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/299835 , vital:57859 , xlink:href="https://doi.org/10.1016/j.bioelechem.2022.108146"
- Description: The role of the biointerface design towards the development of an impedimetric biosensor for the electrochemical detection of human epidermal growth factor receptor 2 (HER2) is investigated. Two novel cobalt phthalocyanines: cobalt tetraphenyl acetic acid phthalocyanine and cobalt tetraphenyl propionic acid phthalocyanine are compared as signal amplifiers and immobilization platforms of the HB5 aptamer towards the electrochemical detection of HER2. In addition, the phthalocyanines are coupled with the metal based cerium oxide nanoparticles. The efficiency of each electrode modification step and the performance of the constructed aptasensors were assessed by impedance spectroscopy. The aptasensors showed very low limit of detection values (all less than 0.2 ng/mL) with high sensitivity and stability. Furthermore, the aptasensors showed very good performance even in human serum samples. Considering these results, the aptasensors demonstrate great potential for improved monitoring of human epidermal growth factor receptor 2 levels for the management of breast cancers.
- Full Text:
- Date Issued: 2022
Enhanced mitochondria destruction on MCF-7 and HeLa cell lines in vitro using triphenyl-phosphonium-labelled phthalocyanines in ultrasound-assisted photodynamic therapy activity
- Nene, Lindokuhle Cindy, Magadla, Aviwe, Nyokong, Tebello
- Authors: Nene, Lindokuhle Cindy , Magadla, Aviwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295766 , vital:57376 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2022.112553"
- Description: This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
- Full Text:
- Date Issued: 2022
- Authors: Nene, Lindokuhle Cindy , Magadla, Aviwe , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295766 , vital:57376 , xlink:href="https://doi.org/10.1016/j.jphotobiol.2022.112553"
- Description: This work reports on the reactive oxygen species (ROS) generation and the therapeutic activities of new triphenyl-phosphonium-labelled phthalocyanines (Pcs), the 2,9,16,23-tetrakis(N-(N-butyl-4-triphenyl-phosphonium)- pyridine-4-yloxy) Zn(II) Pc (3) and 2,9,16,23-tetrakis-(N-(N-butyl-4-triphenyl-phosphonium)-morpholino) Zn(II) Pc (4) upon exposure to light, ultrasound and the combination of light and ultrasound. Two types of ROS were detected: the singlet oxygen (1O2) and hydroxyl radicals. For light irradiations, only the 1O2 was detected. An increase in the ROS generation was observed for samples treated with the combination of light and ultrasound compared to the light and ultrasound mono-treatments. The in vitro anticancer activity through photodynamic (PDT) and sonodynamic (SDT) therapy for the Pcs were also determined and compared to the photo-sonodynamic combination therapy (PSDT). The two cancer cell lines used for the in vitro studies included the Michigan Cancer Foundation-7 (MCF-7) breast cancer and Henrietta Lacks (HeLa) cervical cancer cell lines. The SDT treatments showed improved therapeutic efficacy on the cancer cells for both the Pcs compared to PDT. PSDT showed better therapeutic efficacy compared to both the PDT and SDT mono-treatments.
- Full Text:
- Date Issued: 2022
Impedimetric aptasensor for HER2 biomarker using graphene quantum dots, polypyrrole and cobalt phthalocyanine modified electrodes
- Centane, Sixolile, Nyokong, Tebello
- Authors: Centane, Sixolile , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230960 , vital:49836 , xlink:href="https://doi.org/10.1016/j.sbsr.2021.100467"
- Description: A method is presented for the electrochemical detection of the breast cancer biomarker human epidermal growth factor receptor 2 (HER2). A glassy carbon electrode was modified using two techniques known as sequential adsorption and electro-polymerization, and the results are compared. The highly conductive polypyrrole (PPy) is used, in the presence of sulfur/nitrogen doped graphene quantum dots (SNGQDs) and a known cobalt phthalocyanine (CoPc). The different nanomaterials were used as an immobilization platform for the HER2 specific HB5 aptamer via amide linkage. The nanomaterials were arranged in various ways on the glassy carbon electrode, to investigate the effect of the electrode interface on the operational characteristics of a biosensor. The immobilized aptamer selectively recognizes HER2 on the electrode interface, and this leads to an increased charge transfer resistance (Rct) of the electrode when using ferricyanide as the electrochemical probe. The developed immunosensors showed high sensitivity with the best detection limit of 0.00141 ng/mL. The results showed that the method is simple and sensitive enough for the determination of HER2 in serum samples with good reproducibility and accuracy.
- Full Text:
- Date Issued: 2022
- Authors: Centane, Sixolile , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230960 , vital:49836 , xlink:href="https://doi.org/10.1016/j.sbsr.2021.100467"
- Description: A method is presented for the electrochemical detection of the breast cancer biomarker human epidermal growth factor receptor 2 (HER2). A glassy carbon electrode was modified using two techniques known as sequential adsorption and electro-polymerization, and the results are compared. The highly conductive polypyrrole (PPy) is used, in the presence of sulfur/nitrogen doped graphene quantum dots (SNGQDs) and a known cobalt phthalocyanine (CoPc). The different nanomaterials were used as an immobilization platform for the HER2 specific HB5 aptamer via amide linkage. The nanomaterials were arranged in various ways on the glassy carbon electrode, to investigate the effect of the electrode interface on the operational characteristics of a biosensor. The immobilized aptamer selectively recognizes HER2 on the electrode interface, and this leads to an increased charge transfer resistance (Rct) of the electrode when using ferricyanide as the electrochemical probe. The developed immunosensors showed high sensitivity with the best detection limit of 0.00141 ng/mL. The results showed that the method is simple and sensitive enough for the determination of HER2 in serum samples with good reproducibility and accuracy.
- Full Text:
- Date Issued: 2022
Photodegradation of ibuprofen using 5-10-15-20-tetrakis (4-bromophenyl) porphyrin conjugated to graphene quantum dots
- Magaela, N Bridged, Ndlovu, Knowledge S, Tshangana, Charmaine S, Muleia, Adoph A, Mamba, Bhekie B, Nyokong, Tebello, Managa, Muthumuni
- Authors: Magaela, N Bridged , Ndlovu, Knowledge S , Tshangana, Charmaine S , Muleia, Adoph A , Mamba, Bhekie B , Nyokong, Tebello , Managa, Muthumuni
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304819 , vital:58493 , xlink:href="https://doi.org/10.1016/j.optmat.2022.113147"
- Description: Ibuprofen (IBU) is a common anti-inflammatory drug that is consumed by many individuals in the world. As such, analytical studies have detected high concentrations of the drug in many waterbodies, which poses a risk of harmful effects on the environment and public health. The hydroxyl radical technologies, a collective of techniques also known as advanced oxidation processes (AOPs), can be utilized to degrade this emerging pollutant. In this study, the photodegradation of ibuprofen using 5,10,15,20-tetrakis(4-bromophenyl) porphyrin conjugated to graphene quantum dots was investigated using a custom-built photoreactor. Three different concentrations of IBU (200, 300 and 500 μM) were utilized as initial concentrations. The pH of the IBU was varied between acidic (pH 3.0), natural (pH 5.0) and alkaline (pH 9.0) to note the effect on IBU degradation as a function of time. The Highest ФΔ was obtained for InTBrP- GDQs (ФΔ = 0.80), followed by InTBrP (ФΔ = 0.74). The photodegradation efficiency of the TBrP-GQDs and InTBrP-GQDs were determined to be 43.2 and 76.1% respectively.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Ndlovu, Knowledge S , Tshangana, Charmaine S , Muleia, Adoph A , Mamba, Bhekie B , Nyokong, Tebello , Managa, Muthumuni
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/304819 , vital:58493 , xlink:href="https://doi.org/10.1016/j.optmat.2022.113147"
- Description: Ibuprofen (IBU) is a common anti-inflammatory drug that is consumed by many individuals in the world. As such, analytical studies have detected high concentrations of the drug in many waterbodies, which poses a risk of harmful effects on the environment and public health. The hydroxyl radical technologies, a collective of techniques also known as advanced oxidation processes (AOPs), can be utilized to degrade this emerging pollutant. In this study, the photodegradation of ibuprofen using 5,10,15,20-tetrakis(4-bromophenyl) porphyrin conjugated to graphene quantum dots was investigated using a custom-built photoreactor. Three different concentrations of IBU (200, 300 and 500 μM) were utilized as initial concentrations. The pH of the IBU was varied between acidic (pH 3.0), natural (pH 5.0) and alkaline (pH 9.0) to note the effect on IBU degradation as a function of time. The Highest ФΔ was obtained for InTBrP- GDQs (ФΔ = 0.80), followed by InTBrP (ФΔ = 0.74). The photodegradation efficiency of the TBrP-GQDs and InTBrP-GQDs were determined to be 43.2 and 76.1% respectively.
- Full Text:
- Date Issued: 2022
Phthalocyanine based fabricated exfoliated graphite photoanode for electrodegradation of 4-acetamidophenol under visible light irradiation
- Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295809 , vital:57380 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114115"
- Description: In this study exfoliated graphite (EG) was prepared from natural graphite flakes and incorporated with zinc phthalocyanine for fabrication of photoanode. The electron transfer capabilities of fabricated photoanode were examined by using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Electrophotocatalytic degradation of 4-acetamidophenol in 0.1 M Na2SO4 electrolyte was performed. The photoanode with zinc phthalocyanine (EG-ZnPc) displayed better degradation compared to when only exfoliated graphite was used (EG). Furthermore, electrophotocatalytic degradation gave better performance (removal efficiency of 47.76%) than when individual electrochemical degradation and photodegradation techniques were used.
- Full Text:
- Date Issued: 2022
- Authors: Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/295809 , vital:57380 , xlink:href="https://doi.org/10.1016/j.jphotochem.2022.114115"
- Description: In this study exfoliated graphite (EG) was prepared from natural graphite flakes and incorporated with zinc phthalocyanine for fabrication of photoanode. The electron transfer capabilities of fabricated photoanode were examined by using cyclic voltammetry, electrochemical impedance spectroscopy and scanning electrochemical microscopy. Electrophotocatalytic degradation of 4-acetamidophenol in 0.1 M Na2SO4 electrolyte was performed. The photoanode with zinc phthalocyanine (EG-ZnPc) displayed better degradation compared to when only exfoliated graphite was used (EG). Furthermore, electrophotocatalytic degradation gave better performance (removal efficiency of 47.76%) than when individual electrochemical degradation and photodegradation techniques were used.
- Full Text:
- Date Issued: 2022
Sn (IV) porphyrin-biotin decorated nitrogen doped graphene quantum dots nanohybrids for photodynamic therapy
- Magaela, N Bridged, Matshitse, Refilwe, Balaji, Babu, Managa, Muthumuni, Prinsloo, Earl, Nyokong, Tebello
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022
- Authors: Magaela, N Bridged , Matshitse, Refilwe , Balaji, Babu , Managa, Muthumuni , Prinsloo, Earl , Nyokong, Tebello
- Date: 2022
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/230018 , vital:49733 , xlink:href="https://doi.org/10.1016/j.poly.2021.115624"
- Description: Photodynamic therapy (PDT) is a minimally invasive therapeutic procedure for cancer treatment. This study focuses on the synthesis, photophysicochemical properties, and PDT activity of Sn (IV) porphyrin (2), when linked to biotin decorated nitrogen doped graphene quantum dots (B-NGQDs). The porphyrin complex 2 was conjugated through an ester bond to B-NGQDs to form 2-B-NGQDs. Singlet oxygen quantum yield increased for 2 when linked to B-NGQDs to form 2-B-NQGDs. The dark toxicity and photodynamic therapy studies were conducted for 2, NGQDs and their conjugates using MCF-7 breast cancer cells. The cell viability for dark toxicity of all the compounds was above 90%, and 2-B-NGQDs showed high PDT activity at a concentration of 40 µg/mL with cell viability of 22%.
- Full Text:
- Date Issued: 2022
Electrocatalytic activity of manganese tetra 4-aminophenyl porphyrin in the presence of graphene quantum dots
- Jokzai, Mbulelo, Mpeta, Lekhetho S, Nyokong, Tebello
- Authors: Jokzai, Mbulelo , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231443 , vital:49888 , xlink:href="https://doi.org/10.1016/j.molstruc.2015.02.040"
- Description: A manganese tetra 4-aminophenyl porphyrin (MnTAPP) was synthesized and attached to graphene quantum dots (GQDs) via covalent and π-π interaction to give MnTAPP@GQDs and MnTAPP--GQDs, respectively. There was an increase (using dynamic light scattering and transmission electron microscopy) in size of the GQDs in the presence of the porphyrin due to aggregation. The porphyrins in the absence and presence of GQDs were then adsorbed onto a glassy carbon electrode using drop and dry method. The electrochemical behavior was tested by cyclic voltammetry and chronoamperometry towards hydrazine. Both methods of combining MnTAPP with GQDs improved the activity of the electrocatalysis compared to individual components. MnTAPP@GQDs showed better catalytic rate constant of 4.36 × 102 Ms−1 and lowest LoD of 0.0023 mM followed by MnTAPP--GQDs. Furthermore, the sensor showed good selectivity in the presence of interfering analytes. All probes showed good stability.
- Full Text:
- Date Issued: 2021
- Authors: Jokzai, Mbulelo , Mpeta, Lekhetho S , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231443 , vital:49888 , xlink:href="https://doi.org/10.1016/j.molstruc.2015.02.040"
- Description: A manganese tetra 4-aminophenyl porphyrin (MnTAPP) was synthesized and attached to graphene quantum dots (GQDs) via covalent and π-π interaction to give MnTAPP@GQDs and MnTAPP--GQDs, respectively. There was an increase (using dynamic light scattering and transmission electron microscopy) in size of the GQDs in the presence of the porphyrin due to aggregation. The porphyrins in the absence and presence of GQDs were then adsorbed onto a glassy carbon electrode using drop and dry method. The electrochemical behavior was tested by cyclic voltammetry and chronoamperometry towards hydrazine. Both methods of combining MnTAPP with GQDs improved the activity of the electrocatalysis compared to individual components. MnTAPP@GQDs showed better catalytic rate constant of 4.36 × 102 Ms−1 and lowest LoD of 0.0023 mM followed by MnTAPP--GQDs. Furthermore, the sensor showed good selectivity in the presence of interfering analytes. All probes showed good stability.
- Full Text:
- Date Issued: 2021
Electrocatalytic activity of Schiff base containing copper phthalocyanines towards the detection of catechol
- Ndebele, Nobuhle, Sen, Pinar, Nyokong, Tebello
- Authors: Ndebele, Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231410 , vital:49885 , xlink:href="https://doi.org/10.1016/j.poly.2021.115518"
- Description: In this study, four new copper phthalocyanine complexes were synthesised and studied as electrocatalysts for the detection of catechol. Two of these complexes were derived from a symmetrical benzaldehyde phthalocyanine complex via the condensation of the benzaldehyde substituents with amine reagents. The electrocatalysts proved to be highly stable towards the detection of catechol. The oxidation peaks obtained using cyclic voltammetry range from 0.20 to 0.38 V. Detection limits were obtained via chronoamperometry and are as low as 0.16 µM with fairly high sensitives being obtained. Overall all four copper complexes exhibited excellent electrocatalytic activity towards the electrooxidation of catechol.
- Full Text:
- Date Issued: 2021
- Authors: Ndebele, Nobuhle , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/231410 , vital:49885 , xlink:href="https://doi.org/10.1016/j.poly.2021.115518"
- Description: In this study, four new copper phthalocyanine complexes were synthesised and studied as electrocatalysts for the detection of catechol. Two of these complexes were derived from a symmetrical benzaldehyde phthalocyanine complex via the condensation of the benzaldehyde substituents with amine reagents. The electrocatalysts proved to be highly stable towards the detection of catechol. The oxidation peaks obtained using cyclic voltammetry range from 0.20 to 0.38 V. Detection limits were obtained via chronoamperometry and are as low as 0.16 µM with fairly high sensitives being obtained. Overall all four copper complexes exhibited excellent electrocatalytic activity towards the electrooxidation of catechol.
- Full Text:
- Date Issued: 2021
Enhanced upconversion emission of Er3+-Yb3+ co-doped Ba5 (PO4) 3OH powder phosphor for application in photodynamic therapy
- Mokoena, Puseletso P, Poluwole, David O, Nyokong, Tebello, Swart, Hendrik C, Ntwaeaborwa, Odireleng M
- Authors: Mokoena, Puseletso P , Poluwole, David O , Nyokong, Tebello , Swart, Hendrik C , Ntwaeaborwa, Odireleng M
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185035 , vital:44318 , xlink:href="https://doi.org/10.1016/j.sna.2021.113014"
- Description: Er3+-Yb3+ co-doped Ba5(PO4)3OH nanoparticle powder phosphors were successfully synthesized by urea combustion method. The resulting powder phosphors were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). XRD data confirmed crystallization of pure hexagonal phase of Ba5(PO4)3OH and HRSEM images showed formation of ellipsoidal particles. XPS data combined with EDS analysis confirmed the materials composition that corresponds with identification of all the chemical elements constituting the materials. The in vitro dark cytotoxicity of the particles confirmed lack of cytocidal behaviour in the absence of light, but considerable photodynamic therapy (PDT) activity was observed upon illumination. Upon excitation using a 980 nm laser, multiple emission peaks in the green and red regions corresponding to the optical transitions of Er3+ ion were observed. Upon co-doping with Yb3+, upconverted red emission was detected and this was attributable to non-radiative energy transfer from Yb3+ to Er3+. The proposed mechanism of upconversion photoluminescence is discussed.
- Full Text:
- Date Issued: 2021
- Authors: Mokoena, Puseletso P , Poluwole, David O , Nyokong, Tebello , Swart, Hendrik C , Ntwaeaborwa, Odireleng M
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185035 , vital:44318 , xlink:href="https://doi.org/10.1016/j.sna.2021.113014"
- Description: Er3+-Yb3+ co-doped Ba5(PO4)3OH nanoparticle powder phosphors were successfully synthesized by urea combustion method. The resulting powder phosphors were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), high resolution scanning electron microscopy (HRSEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectroscopy (PL). XRD data confirmed crystallization of pure hexagonal phase of Ba5(PO4)3OH and HRSEM images showed formation of ellipsoidal particles. XPS data combined with EDS analysis confirmed the materials composition that corresponds with identification of all the chemical elements constituting the materials. The in vitro dark cytotoxicity of the particles confirmed lack of cytocidal behaviour in the absence of light, but considerable photodynamic therapy (PDT) activity was observed upon illumination. Upon excitation using a 980 nm laser, multiple emission peaks in the green and red regions corresponding to the optical transitions of Er3+ ion were observed. Upon co-doping with Yb3+, upconverted red emission was detected and this was attributable to non-radiative energy transfer from Yb3+ to Er3+. The proposed mechanism of upconversion photoluminescence is discussed.
- Full Text:
- Date Issued: 2021
Modulation of the optical properties of chiral porphyrin dimers by introducing bridged chiral amide-bonds
- Qin, Mingfeng, Zhang, Zhen, Zhu, Weihua, Mack, John, Soy, Rodah C, Nyokong, Tebello, Liang, Xu
- Authors: Qin, Mingfeng , Zhang, Zhen , Zhu, Weihua , Mack, John , Soy, Rodah C , Nyokong, Tebello , Liang, Xu
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190815 , vital:45031 , xlink:href="https://doi.org/10.1142/S1088424620500492"
- Description: The d/l-enantiomers of a series of three Zn(II)tetraarylporphyrin dimers were synthesized and isolated by incorporating a bridging amide-bonded xanthene moiety at the para-position of one of the meso-aryl rings. The electronic structures and optical properties were modulated by incorporating chiral amino acid moieties into the amide-bonding moieties of the xanthene bridge that contain methyl, tolyl and 2-methylindole substituents. A cofacial dimer was formed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) resulting in a significant red shift of the B band, due to a relative destabilization of the HOMO, which has large MO coefficients on the pyrrole nitrogens. The sign sequences observed in the B band region of the CD spectra due to the presence of the chiral amino acid moieties were modified due to this change in geometry. Significant CD intensity is also observed in the B band region of the CD spectra of anion radical species during in situ spectroelectrochemical measurements.
- Full Text:
- Date Issued: 2021
- Authors: Qin, Mingfeng , Zhang, Zhen , Zhu, Weihua , Mack, John , Soy, Rodah C , Nyokong, Tebello , Liang, Xu
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/190815 , vital:45031 , xlink:href="https://doi.org/10.1142/S1088424620500492"
- Description: The d/l-enantiomers of a series of three Zn(II)tetraarylporphyrin dimers were synthesized and isolated by incorporating a bridging amide-bonded xanthene moiety at the para-position of one of the meso-aryl rings. The electronic structures and optical properties were modulated by incorporating chiral amino acid moieties into the amide-bonding moieties of the xanthene bridge that contain methyl, tolyl and 2-methylindole substituents. A cofacial dimer was formed in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) resulting in a significant red shift of the B band, due to a relative destabilization of the HOMO, which has large MO coefficients on the pyrrole nitrogens. The sign sequences observed in the B band region of the CD spectra due to the presence of the chiral amino acid moieties were modified due to this change in geometry. Significant CD intensity is also observed in the B band region of the CD spectra of anion radical species during in situ spectroelectrochemical measurements.
- Full Text:
- Date Issued: 2021
Photodynamic therapy activities of phthalocyanine-based macromolecular photosensitizers on MCF-7 breast cancer cells
- Ahmetali, Erem, Sen, Pinar, Süer, N Ceren, Nyokong, Tebello, Erin, Tarik, Sener, M Kasim
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Nyokong, Tebello , Erin, Tarik , Sener, M Kasim
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185655 , vital:44407 , xlink:href="https://doi.org/10.1080/10601325.2021.1934012"
- Description: Poly(oxanorbornene)s with zinc(II) phthalocyanine side chains have been synthesized by ring-opening metathesis polymerization. The incorporation of zinc(II) phthalocyanine into cationic polymer has given poly(oxanorbornene)s noteworthy photophysicochemical properties and the capacity to generate singlet oxygen under light irradiation. To investigate photosensitizer’s properties of the newly synthesized polymers P6 and P7: fluorescence (ΦF), singlet oxygen (ΦΔ) and triplet (ΦT) quantum yields of polymers have been measured in dimethyl sulfoxide and aqueous medium. Singlet oxygen quantum yields of P6 and P7 have been found to be 0.22 and 0.20 in dimethyl sulfoxide, respectively. Then, photodynamic therapy activities of polymers (P1-P7) against human breast adenocarcinoma cell line (MCF-7 cells) have been investigated. The copolymer P5 bearing pendant zinc(II) phthalocyanine and triethyl phosphonium functionalities has showed enhanced PDT activity with less than 10% viable cells at 60 μg/mL.
- Full Text:
- Date Issued: 2021
- Authors: Ahmetali, Erem , Sen, Pinar , Süer, N Ceren , Nyokong, Tebello , Erin, Tarik , Sener, M Kasim
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185655 , vital:44407 , xlink:href="https://doi.org/10.1080/10601325.2021.1934012"
- Description: Poly(oxanorbornene)s with zinc(II) phthalocyanine side chains have been synthesized by ring-opening metathesis polymerization. The incorporation of zinc(II) phthalocyanine into cationic polymer has given poly(oxanorbornene)s noteworthy photophysicochemical properties and the capacity to generate singlet oxygen under light irradiation. To investigate photosensitizer’s properties of the newly synthesized polymers P6 and P7: fluorescence (ΦF), singlet oxygen (ΦΔ) and triplet (ΦT) quantum yields of polymers have been measured in dimethyl sulfoxide and aqueous medium. Singlet oxygen quantum yields of P6 and P7 have been found to be 0.22 and 0.20 in dimethyl sulfoxide, respectively. Then, photodynamic therapy activities of polymers (P1-P7) against human breast adenocarcinoma cell line (MCF-7 cells) have been investigated. The copolymer P5 bearing pendant zinc(II) phthalocyanine and triethyl phosphonium functionalities has showed enhanced PDT activity with less than 10% viable cells at 60 μg/mL.
- Full Text:
- Date Issued: 2021
Photophysicochemical behaviour of phenoxy propanoic acid functionalised zinc phthalocyanines when grafted onto iron oxide and silica nanoparticles: Effects in photodynamic antimicrobial chemotherapy
- Dube, Edith, Soy, Rodah C, Shumba, Mumyaradzi, Nyokong, Tebello
- Authors: Dube, Edith , Soy, Rodah C , Shumba, Mumyaradzi , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185465 , vital:44389 , xlink:href="https://doi.org/10.1016/j.jlumin.2021.117939"
- Description: This work reports on the covalent linkage of (3-aminopropyl)triethoxysilane (APTES) functionalised iron oxide (IONPs–APTES) and silica (SiNPs–APTES) nanoparticles with zinc(II) tetra–([3–(4–phenoxy) propanoic acid) phthalocyanine] (1) and zinc(II) mono–([3–(4–phenoxy) propanoic acid) phthalocyanine (2) via an amide bond to form the conjugates, 1–IONPs-APTES, 1–SiNPs–APTES, 2-IONPs-APTES and 2-SiNPs-APTES). The photophysicochemical behaviour of the conjugates was investigated. These were characterized by a decrease in the fluorescence quantum yields and lifetimes, and an increase in the triplet quantum yield and singlet oxygen quantum yield when compared to complex 1 and 2 alone. The conjugates to IONPs-APTES displayed higher ΦT than those of SiNPs-APTES probably due to the heavy atom effect of iron compared to silica and the high loading capacity of the relatively smaller iron oxide NPs, however, there was no significant difference in the ΦΔ values of 2-IONPs-APTES (ΦΔ=0.59) and 2-SiNPs-APTES (ΦΔ=0.58), suggesting that the energy transfer process between the excited triplet state of 2-IONPs-APTES and ground state molecular oxygen was not effective. Photodynamic antimicrobial chemotherapy (PACT) studies showed that linkage of Pcs to NPs improves their photoinactivation capability against Staphylococcus aureus and Escherichia coli. IONPs-APTES and its conjugates generally displayed the highest log reductions than SiNPs-APTES and its conjugates except for studies after 75 min of irradiation for S. Aureus where the log reductions are the same. 2-IONP-APTES was recovered using a magnet after each photodegradation cycle and its stability after 3 cycles confirmed re-usability.
- Full Text:
- Date Issued: 2021
- Authors: Dube, Edith , Soy, Rodah C , Shumba, Mumyaradzi , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185465 , vital:44389 , xlink:href="https://doi.org/10.1016/j.jlumin.2021.117939"
- Description: This work reports on the covalent linkage of (3-aminopropyl)triethoxysilane (APTES) functionalised iron oxide (IONPs–APTES) and silica (SiNPs–APTES) nanoparticles with zinc(II) tetra–([3–(4–phenoxy) propanoic acid) phthalocyanine] (1) and zinc(II) mono–([3–(4–phenoxy) propanoic acid) phthalocyanine (2) via an amide bond to form the conjugates, 1–IONPs-APTES, 1–SiNPs–APTES, 2-IONPs-APTES and 2-SiNPs-APTES). The photophysicochemical behaviour of the conjugates was investigated. These were characterized by a decrease in the fluorescence quantum yields and lifetimes, and an increase in the triplet quantum yield and singlet oxygen quantum yield when compared to complex 1 and 2 alone. The conjugates to IONPs-APTES displayed higher ΦT than those of SiNPs-APTES probably due to the heavy atom effect of iron compared to silica and the high loading capacity of the relatively smaller iron oxide NPs, however, there was no significant difference in the ΦΔ values of 2-IONPs-APTES (ΦΔ=0.59) and 2-SiNPs-APTES (ΦΔ=0.58), suggesting that the energy transfer process between the excited triplet state of 2-IONPs-APTES and ground state molecular oxygen was not effective. Photodynamic antimicrobial chemotherapy (PACT) studies showed that linkage of Pcs to NPs improves their photoinactivation capability against Staphylococcus aureus and Escherichia coli. IONPs-APTES and its conjugates generally displayed the highest log reductions than SiNPs-APTES and its conjugates except for studies after 75 min of irradiation for S. Aureus where the log reductions are the same. 2-IONP-APTES was recovered using a magnet after each photodegradation cycle and its stability after 3 cycles confirmed re-usability.
- Full Text:
- Date Issued: 2021
The photophysicochemical properties and photodynamic therapy activity of Schiff base substituted phthalocyanines doped into silica nanoparticles and conjugated to folic acid
- Magadla, Aviwe, Babu, Balaji, Sen, Pinar, Nyokong, Tebello
- Authors: Magadla, Aviwe , Babu, Balaji , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185407 , vital:44384 , xlink:href="https://doi.org/10.1016/j.poly.2021.115227"
- Description: This work explores the synthesis, photophysicochemical properties and photodynamic activity (PDT) of tetrakis [N,N’–bis (4-(diethylamino)benzylidene) amino)propan-2-yl)oxy) phthalocyaninato] Zn (II) (3) and tetra-phenoxy N,N-dimethyl-4-((methylimino) Zn (II) (4) when the encapsulated into silica nanoparticles (SiNPs) followed by conjugation of folic acid (FA). The synthesised complexes and their doped analogues are examined for their PDT activity using MCF-7 cells. All the complexes showed dark toxicity that is >80%. The folic acid conjugates, MPc@SiNPs-FA showed greater photocytoxicity against MCF-7 cells upon irradiation with laser light.
- Full Text:
- Date Issued: 2021
- Authors: Magadla, Aviwe , Babu, Balaji , Sen, Pinar , Nyokong, Tebello
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185407 , vital:44384 , xlink:href="https://doi.org/10.1016/j.poly.2021.115227"
- Description: This work explores the synthesis, photophysicochemical properties and photodynamic activity (PDT) of tetrakis [N,N’–bis (4-(diethylamino)benzylidene) amino)propan-2-yl)oxy) phthalocyaninato] Zn (II) (3) and tetra-phenoxy N,N-dimethyl-4-((methylimino) Zn (II) (4) when the encapsulated into silica nanoparticles (SiNPs) followed by conjugation of folic acid (FA). The synthesised complexes and their doped analogues are examined for their PDT activity using MCF-7 cells. All the complexes showed dark toxicity that is >80%. The folic acid conjugates, MPc@SiNPs-FA showed greater photocytoxicity against MCF-7 cells upon irradiation with laser light.
- Full Text:
- Date Issued: 2021
Turn-on detection of cysteine by a donor-acceptor type quinoline fluorophore: Exploring the sensing strategy and performance in bioimaging
- Muthusamy, Selvaraj, Zhao, Long, Rajalakshmi, Kanagaraj, Zhu, Dongwei, Soy, Rodah C, Mack, John, Nyokong, Tebello, Wang, Shengjun, Lee, Kang-Bong, Zhu, Weihua
- Authors: Muthusamy, Selvaraj , Zhao, Long , Rajalakshmi, Kanagaraj , Zhu, Dongwei , Soy, Rodah C , Mack, John , Nyokong, Tebello , Wang, Shengjun , Lee, Kang-Bong , Zhu, Weihua
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185644 , vital:44406 , xlink:href="https://doi.org/10.1016/j.dyepig.2021.109556"
- Description: Tracking the biothiol cysteine (Cys) in living systems is a significant responsibility to balance the redox environment and oxidative stress. A quinoline-7-nitro-1,2,3-benzoxadiazole (Q-NBD) fluorophore has been synthesized and characterized towards examination of Cys. The probe forms a quinoline-substituted phenol (Q-Ph-OH) after thiolysis of the NBD ether bond, leading to an increase of fluorescence at green channel. The turn-on sensing mechanism originates from the change in intramolecular charge transfer (ICT-OFF) along with an aggregation-induced emission (AIE) as suggested by spectroscopy measurements in solutions, time-dependent density-functional theory (TD-DFT) calculations and 1H NMR titration examination. Importantly, Q-NBD exhibited great sensitivity with a low limit of detection value of 89.5 nM and remarkable selectivity in various biothiols towards Cys. The sensor probe was successfully used for detecting both endogenous and exogenous Cys in PC3 living cells and spiked Cys in human urine samples.
- Full Text:
- Date Issued: 2021
- Authors: Muthusamy, Selvaraj , Zhao, Long , Rajalakshmi, Kanagaraj , Zhu, Dongwei , Soy, Rodah C , Mack, John , Nyokong, Tebello , Wang, Shengjun , Lee, Kang-Bong , Zhu, Weihua
- Date: 2021
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/185644 , vital:44406 , xlink:href="https://doi.org/10.1016/j.dyepig.2021.109556"
- Description: Tracking the biothiol cysteine (Cys) in living systems is a significant responsibility to balance the redox environment and oxidative stress. A quinoline-7-nitro-1,2,3-benzoxadiazole (Q-NBD) fluorophore has been synthesized and characterized towards examination of Cys. The probe forms a quinoline-substituted phenol (Q-Ph-OH) after thiolysis of the NBD ether bond, leading to an increase of fluorescence at green channel. The turn-on sensing mechanism originates from the change in intramolecular charge transfer (ICT-OFF) along with an aggregation-induced emission (AIE) as suggested by spectroscopy measurements in solutions, time-dependent density-functional theory (TD-DFT) calculations and 1H NMR titration examination. Importantly, Q-NBD exhibited great sensitivity with a low limit of detection value of 89.5 nM and remarkable selectivity in various biothiols towards Cys. The sensor probe was successfully used for detecting both endogenous and exogenous Cys in PC3 living cells and spiked Cys in human urine samples.
- Full Text:
- Date Issued: 2021
Investigation of electrocatalytic behaviour of low symmetry cobalt phthalocyanines when clicked to azide grafted carbon electrodes
- Mpeta, Lakethe S, Sen, Pinar, Nyokong, Tebello
- Authors: Mpeta, Lakethe S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186304 , vital:44483 , xlink:href="https://doi.org/10.1016/j.jelechem.2020.113896"
- Description: This work describes the electrochemical properties of low symmetry cobalt phthalocyanines namely, tris-[(4-tert-butylphenoxy)-4-(pent-4-yn-1-yloxy) phthalocyaniato] cobalt (II) (3) and tris-[(4-tert-butylphenoxy)-4-(4-ethybylbenzyl-oxy) phthalocyaniato] cobalt (II) (5). The complexes were characterized by a number of techniques including UV–Vis, mass, and infrared spectra, as well as elemental analysis. The glassy carbon electrodes were first azide functionalized then clicked to low symmetry phthalocyanines. The click reaction was confirmed using X-ray photoelectron spectra. The constructed electrodes showed excellent electrocatalytic activity towards hydrazine oxidation. Oxidation peaks with low potentials of 0.21 V and 0.26 V, for complexes 3 and 5, respectively were obtained. Complex-5 gave a better detection limit of 0.94 μM and electrocatalytic rate constant of 5.6 × 106 M−1 s−1.
- Full Text:
- Date Issued: 2020
- Authors: Mpeta, Lakethe S , Sen, Pinar , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186304 , vital:44483 , xlink:href="https://doi.org/10.1016/j.jelechem.2020.113896"
- Description: This work describes the electrochemical properties of low symmetry cobalt phthalocyanines namely, tris-[(4-tert-butylphenoxy)-4-(pent-4-yn-1-yloxy) phthalocyaniato] cobalt (II) (3) and tris-[(4-tert-butylphenoxy)-4-(4-ethybylbenzyl-oxy) phthalocyaniato] cobalt (II) (5). The complexes were characterized by a number of techniques including UV–Vis, mass, and infrared spectra, as well as elemental analysis. The glassy carbon electrodes were first azide functionalized then clicked to low symmetry phthalocyanines. The click reaction was confirmed using X-ray photoelectron spectra. The constructed electrodes showed excellent electrocatalytic activity towards hydrazine oxidation. Oxidation peaks with low potentials of 0.21 V and 0.26 V, for complexes 3 and 5, respectively were obtained. Complex-5 gave a better detection limit of 0.94 μM and electrocatalytic rate constant of 5.6 × 106 M−1 s−1.
- Full Text:
- Date Issued: 2020
New difluoroboron complexes based on N, O-chelated Schiff base ligands: Synthesis, characterization, DFT calculations and photophysical and electrochemical properties
- Sen, Pinar, Mpeta, Lekhetho S, Mack, John, Nyokong, Tebello
- Authors: Sen, Pinar , Mpeta, Lekhetho S , Mack, John , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186207 , vital:44473 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117262"
- Description: The synthesis of new Schiff bases and their dinuclear boron complexes is described, along with their characterization by 1H and 13C NMR, FT-IR, and UV–visible absorption spectroscopy, mass spectrometry, and EDX for elemental analysis. The optical and photophysical properties were examined in terms of their absorption and emission behavior, fluorescence quantum yields and fluorescence lifetimes. The flexible dinuclear boron complexes that are linked by a flexible carbon chain exhibited large Stokes shifts in the range from 92 nm to 115 nm in contrast to BODIPY dyes. Those properties make these complexes precious for applications in fluorescence materials. And also theoretical calculations were obtained by using Density Functional Theory (DFT) methods.
- Full Text:
- Date Issued: 2020
- Authors: Sen, Pinar , Mpeta, Lekhetho S , Mack, John , Nyokong, Tebello
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186207 , vital:44473 , xlink:href="https://doi.org/10.1016/j.jlumin.2020.117262"
- Description: The synthesis of new Schiff bases and their dinuclear boron complexes is described, along with their characterization by 1H and 13C NMR, FT-IR, and UV–visible absorption spectroscopy, mass spectrometry, and EDX for elemental analysis. The optical and photophysical properties were examined in terms of their absorption and emission behavior, fluorescence quantum yields and fluorescence lifetimes. The flexible dinuclear boron complexes that are linked by a flexible carbon chain exhibited large Stokes shifts in the range from 92 nm to 115 nm in contrast to BODIPY dyes. Those properties make these complexes precious for applications in fluorescence materials. And also theoretical calculations were obtained by using Density Functional Theory (DFT) methods.
- Full Text:
- Date Issued: 2020
Photophysical and nonlinear optical properties of the positional isomers of 4-(4-tertbutylphenoxy) substituted cobalt, nickel and copper phthalocyanines
- Neduvhuledza, Zelda, Nkaki, Thabo, Louzada, Marcel, Nyokong, Tebello, Khene, Samson M
- Authors: Neduvhuledza, Zelda , Nkaki, Thabo , Louzada, Marcel , Nyokong, Tebello , Khene, Samson M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186067 , vital:44460 , xlink:href="https://doi.org/10.1016/j.optmat.2020.110195"
- Description: This paper reports on the third order nonlinear optical properties of cobalt, nickel and tetrakis(4- terbutylphenoxy)phthalocyaninatocopper(II) isomers, using the Z-scan technique. Metal-free isomers were found to have high nonlinear absorption coefficient (β) values compared to the metalated isomers. Metal-free C2v isomer was found to have the highest β value of 1.52 × 10− 10 mMW− 1 in THF. All the metal-free and metal phthalocyanine isomers nonlinear properties were found to be dependent on the singlet state absorption. Imaginary second order nonlinear hyperpolarizability (Im[γ]), ground state cross section (σg), excited states cross sections (σs and σt) and two photon absorption (TPA) cross section (σTPA) values are reported in this work. The five-energy level model rate equations were used to model the nonlinear response and absorption cross sections.
- Full Text:
- Date Issued: 2020
- Authors: Neduvhuledza, Zelda , Nkaki, Thabo , Louzada, Marcel , Nyokong, Tebello , Khene, Samson M
- Date: 2020
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/186067 , vital:44460 , xlink:href="https://doi.org/10.1016/j.optmat.2020.110195"
- Description: This paper reports on the third order nonlinear optical properties of cobalt, nickel and tetrakis(4- terbutylphenoxy)phthalocyaninatocopper(II) isomers, using the Z-scan technique. Metal-free isomers were found to have high nonlinear absorption coefficient (β) values compared to the metalated isomers. Metal-free C2v isomer was found to have the highest β value of 1.52 × 10− 10 mMW− 1 in THF. All the metal-free and metal phthalocyanine isomers nonlinear properties were found to be dependent on the singlet state absorption. Imaginary second order nonlinear hyperpolarizability (Im[γ]), ground state cross section (σg), excited states cross sections (σs and σt) and two photon absorption (TPA) cross section (σTPA) values are reported in this work. The five-energy level model rate equations were used to model the nonlinear response and absorption cross sections.
- Full Text:
- Date Issued: 2020