Nano-enabled liposomal mucoadhesive films for enhanced efavirenz buccal drug delivery
- Okafor, Nnamadi I, Ngoepe, Mpho, Siwe-Noundou, Xavier, Krause, Rui W M
- Authors: Okafor, Nnamadi I , Ngoepe, Mpho , Siwe-Noundou, Xavier , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194032 , vital:45417 , xlink:href="https://doi.org/10.1016/j.jddst.2019.101312"
- Description: Buccal films (BFs) were prepared using a solvent casting method using the liposomal suspension as the dispersing medium. Optimization of some physical properties of the films containing different amounts of polymers was done using digital Vernier calliper and digital weighing balance. The physiochemical properties of the best optimized properties were characterized using Differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscopy (SEM). Permeation study of the BFs composed of Carbopol (CP) alone and CP to Pluronic 127 (PF127) demonstrated better bio-adhesive properties than the films made of other polymers such as HPMC (hydroxyl propyl methyl cellulose) and HPMC-PF127. These CP based BFs (without and with PF127) exhibited good film thickness 0.88 ± 0.10 and 0.76 ± 0.14 mm, with weight uniformity 68.22 ± 1.04 and 86.28 ± 2.16 mg, satisfactory flexibility values 258 and 321, and slightly acidic pH 6.43 ± 0.76 and 6.32 ± 0.01. The swelling percentage was found to be 50% for CP and 78% for CP-PF127. The cumulative amount of drug that permeated through the buccal epithelium after 24 h was about 66% from CP and 75% from CP-PF127.
- Full Text:
- Date Issued: 2019
- Authors: Okafor, Nnamadi I , Ngoepe, Mpho , Siwe-Noundou, Xavier , Krause, Rui W M
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194032 , vital:45417 , xlink:href="https://doi.org/10.1016/j.jddst.2019.101312"
- Description: Buccal films (BFs) were prepared using a solvent casting method using the liposomal suspension as the dispersing medium. Optimization of some physical properties of the films containing different amounts of polymers was done using digital Vernier calliper and digital weighing balance. The physiochemical properties of the best optimized properties were characterized using Differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier transfer infrared spectroscopy (FTIR), Transmission Electron Microscopy (TEM), Energy dispersive X-ray spectroscopy (EDS), and Scanning Electron Microscopy (SEM). Permeation study of the BFs composed of Carbopol (CP) alone and CP to Pluronic 127 (PF127) demonstrated better bio-adhesive properties than the films made of other polymers such as HPMC (hydroxyl propyl methyl cellulose) and HPMC-PF127. These CP based BFs (without and with PF127) exhibited good film thickness 0.88 ± 0.10 and 0.76 ± 0.14 mm, with weight uniformity 68.22 ± 1.04 and 86.28 ± 2.16 mg, satisfactory flexibility values 258 and 321, and slightly acidic pH 6.43 ± 0.76 and 6.32 ± 0.01. The swelling percentage was found to be 50% for CP and 78% for CP-PF127. The cumulative amount of drug that permeated through the buccal epithelium after 24 h was about 66% from CP and 75% from CP-PF127.
- Full Text:
- Date Issued: 2019
Purification and biochemical characterisation of a putative sodium channel agonist secreted from the South African Knobbly sea anemone Bunodosoma capense
- van Losenoord, Wynand, Krause, Jason, Parker-Nance, Shirley, Krause, Rui W M, Stoychey, Stoyan, Frost, Carminita L
- Authors: van Losenoord, Wynand , Krause, Jason , Parker-Nance, Shirley , Krause, Rui W M , Stoychey, Stoyan , Frost, Carminita L
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194082 , vital:45421 , xlink:href="https://doi.org/10.1016/j.toxicon.2019.06.222"
- Description: Voltage gated ion channels have become a subject of investigation as possible pharmaceutical targets. Research has linked the activity of ion channels directly to anti-inflammatory pathways, energy homeostasis, cancer proliferation and painful diabetic neuropathy. Sea anemones secrete a diverse array of bioactive compounds including potassium and sodium channel toxins. A putative novel sodium channel agonist (molecular mass of 4619.7 Da) with a predicted sequence: CLCNSDGPSV RGNTLSGILW LAGCPSGWHN CKKHKPTIGW CCK was isolated from Bunodosoma capense using a modified stimulation technique to induce the secretion of the neurotoxin rich mucus confirmed by an Artemia nauplii bio-assay. The peptide purification combined size-exclusion and reverse-phase high performance liquid chromatography. A thallium-based ion flux assay confirmed the presence of a sodium channel agonist/inhibitor and purity was determined using a modified tricine SDS-PAGE system. The peptide isolated indicated the presence of multiple disulfide bonds in a tight β-defensin cystine conformation. An IC50 value of 26 nM was determined for total channel inhibition on MCF-7 cells. The unique putative sodium channel agonist initiating with a cystine bond indicates a divergent evolution to those previously isolated from Bunodosoma species.
- Full Text:
- Date Issued: 2019
- Authors: van Losenoord, Wynand , Krause, Jason , Parker-Nance, Shirley , Krause, Rui W M , Stoychey, Stoyan , Frost, Carminita L
- Date: 2019
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194082 , vital:45421 , xlink:href="https://doi.org/10.1016/j.toxicon.2019.06.222"
- Description: Voltage gated ion channels have become a subject of investigation as possible pharmaceutical targets. Research has linked the activity of ion channels directly to anti-inflammatory pathways, energy homeostasis, cancer proliferation and painful diabetic neuropathy. Sea anemones secrete a diverse array of bioactive compounds including potassium and sodium channel toxins. A putative novel sodium channel agonist (molecular mass of 4619.7 Da) with a predicted sequence: CLCNSDGPSV RGNTLSGILW LAGCPSGWHN CKKHKPTIGW CCK was isolated from Bunodosoma capense using a modified stimulation technique to induce the secretion of the neurotoxin rich mucus confirmed by an Artemia nauplii bio-assay. The peptide purification combined size-exclusion and reverse-phase high performance liquid chromatography. A thallium-based ion flux assay confirmed the presence of a sodium channel agonist/inhibitor and purity was determined using a modified tricine SDS-PAGE system. The peptide isolated indicated the presence of multiple disulfide bonds in a tight β-defensin cystine conformation. An IC50 value of 26 nM was determined for total channel inhibition on MCF-7 cells. The unique putative sodium channel agonist initiating with a cystine bond indicates a divergent evolution to those previously isolated from Bunodosoma species.
- Full Text:
- Date Issued: 2019
Conjugation of isoniazid to a zinc phthalocyanine via hydrazone linkage for pH-dependent liposomal controlled release
- Nkanga, Christian I, Krause, Rui W M
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
- Date Issued: 2018
- Authors: Nkanga, Christian I , Krause, Rui W M
- Date: 2018
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/194992 , vital:45517 , xlink:href="https://doi.org/10.1007/s13204-018-0776-y"
- Description: Tuberculosis (TB) remains the leading cause of mortality from infectious diseases. Extended TB treatment and frequent adverse effects, due to poor bioavailability of anti-tubercular drugs (ATBDs), represent the main rationales behind liposomal encapsulation for controlled delivery. Liposomes have been reported as potential vehicles for targeted delivery of ATBDs due to their rapid uptake by macrophages, which are known as the main host cells for TB causative agent (Mycobacterium tuberculosis). Additionally, the need for controlled release of ATBDs arises because leakage is part of the key liposome challenges for hydrophilic compounds like isoniazid (INH). In this study, INH was conjugated to a highly hydrophobic photosensitizer, zinc (II) phthalocyanine (PC), through hydrazone bonding. The obtained conjugate (PC–INH) was encapsulated in liposomes by film hydration method. PC–INH loaded liposomes (PILs) were characterized using dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectrometry and UV–Vis absorption spectrometry, which was used also for estimation of encapsulation efficiency (î). INH release was evaluated in different pH media using dialysis. Particle size, zeta potential and î of PILs were about 506 nm, − 55 mV and 72%, respectively. Over 12 h, PILs exhibited 22, 41, 97 and 100% of INH, respectively, released in pH 7.4, 6.4, 5.4 and 4.4 media. This pH-dependent behavior is attractive for site-specific delivery. These findings suggest the conjugation of chemotherapeutics to phthalocyanines using pH-labile linkages as a potential strategy for liposomal controlled release.
- Full Text:
- Date Issued: 2018
- «
- ‹
- 1
- ›
- »