Distributional range of the South African maritime spider-egg parasitoid wasp, Echthrodesis lamorali (Hymenoptera: Platygastridae Scelioninae) insecta hymenoptera
- Owen, Candice A, Coetzee, Julie A, van Noort, Simon
- Authors: Owen, Candice A , Coetzee, Julie A , van Noort, Simon
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444407 , vital:74238 , https://hdl.handle.net/10520/EJC161753
- Description: The southern African coastline plays host to nine spider species. Two of these, namely Desis formidabilis (O. P.-Cambridge, 1890) (Araneae: Desidae) and Amaurobioides africanus Hewitt, 1917 (Araneae: Anyphaenidae), are recorded as hosts for an intertidal spider egg parasitoid, Echthrodesis lamorali Masner, 1968 (Hymenoptera: Platygastridae: Scelioninae). These two spider species occur from Lüderitz (Namibia) along the coast to East London (Eastern Cape Province, South Africa), while their parasitoid has been known from only a single locality on the Cape Peninsula. The South African coastline was surveyed from Jacobsbaai (Western Cape Province) to East London in an attempt to determine the full distribution of E. lamorali. The wasp was only reared from host eggs collected on the Cape Peninsula, confirming a high degree of endemism for this species.
- Full Text:
- Date Issued: 2014
- Authors: Owen, Candice A , Coetzee, Julie A , van Noort, Simon
- Date: 2014
- Subjects: To be catalogued
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/444407 , vital:74238 , https://hdl.handle.net/10520/EJC161753
- Description: The southern African coastline plays host to nine spider species. Two of these, namely Desis formidabilis (O. P.-Cambridge, 1890) (Araneae: Desidae) and Amaurobioides africanus Hewitt, 1917 (Araneae: Anyphaenidae), are recorded as hosts for an intertidal spider egg parasitoid, Echthrodesis lamorali Masner, 1968 (Hymenoptera: Platygastridae: Scelioninae). These two spider species occur from Lüderitz (Namibia) along the coast to East London (Eastern Cape Province, South Africa), while their parasitoid has been known from only a single locality on the Cape Peninsula. The South African coastline was surveyed from Jacobsbaai (Western Cape Province) to East London in an attempt to determine the full distribution of E. lamorali. The wasp was only reared from host eggs collected on the Cape Peninsula, confirming a high degree of endemism for this species.
- Full Text:
- Date Issued: 2014
Comparisons of the thermal physiology of water hyacinth biological control agents: predicting establishment and distribution pre-and post-release
- May, Bronwen, Coetzee, Julie A
- Authors: May, Bronwen , Coetzee, Julie A
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123476 , vital:35446 , https://doi.10.1111/eea.120628
- Description: Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high-lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre- and post-release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree-day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree-day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K = 502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high-lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource-limited countries, to prevent wasting efforts in getting an agent established.
- Full Text:
- Date Issued: 2013
- Authors: May, Bronwen , Coetzee, Julie A
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/123476 , vital:35446 , https://doi.10.1111/eea.120628
- Description: Investigations into the thermal physiology of weed biological control agents may elucidate reasons for establishment failure following release. Such studies have shown that the success of water hyacinth biological control in South Africa remains variable in the high-lying interior Highveld region, because the control agents are restricted to establishment and development due to extreme winter conditions. To determine the importance of thermal physiology studies, both pre- and post-release, this study compared the known thermal requirements of Eccritotarsus catarinensis (Carvalho) (Hemiptera: Miridae) released in 1996, with those of an agent released in 1990, Niphograpta albiguttalis (Warren) (Lepidoptera: Pyralidae) and a candidate agent, Megamelus scutellaris Berg (Hemiptera: Delphacidae), which is currently under consideration for release. The lower developmental threshold (to) and rate of development (K) were determined for N. albiguttalis and M. scutellaris, using a reduced axis regression, and incorporated into a degree-day model which compared the number of generations that E. catarinensis, N. albiguttalis, and M. scutellaris are capable of producing annually at any given site in South Africa. The degree-day models predicted that N. albiguttalis (K = 439.43, to = 9.866) can complete 4–11 generations per year, whereas M. scutellaris (K = 502.96, to = 11.458) can only complete 0–10 generations per year, compared with E. catarinensis (K = 342, to = 10.3) which is predicted to complete 3–14 generations per year. This suggests that the candidate agent, M. scutellaris, will not fare better in establishment than the other two agents that have been released in the Highveld, and that it may not be worth releasing an agent with higher thermal requirements than the agents that already occur in these high-lying areas. Thermal physiology studies conducted prior to release are important tools in biological control programmes, particularly those in resource-limited countries, to prevent wasting efforts in getting an agent established.
- Full Text:
- Date Issued: 2013
Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), a potential biological control agent for the submerged aquatic weed, Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae)
- Martin, Grant D, Coetzee, Julie A, Baars, Jan-Robert
- Authors: Martin, Grant D , Coetzee, Julie A , Baars, Jan-Robert
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103912 , vital:32322 , https://doi.org/10.4001/003.021.0118
- Description: The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive.
- Full Text:
- Date Issued: 2013
- Authors: Martin, Grant D , Coetzee, Julie A , Baars, Jan-Robert
- Date: 2013
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/103912 , vital:32322 , https://doi.org/10.4001/003.021.0118
- Description: The leaf-mining fly, Hydrellia lagarosiphon Deeming (Diptera: Ephydridae), was investigated in its native range in South Africa, to determine its potential as a biological control agent for Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae), an invasive submerged macrophyte that is weedy in many parts of the world. The fly was found throughout the indigenous range of the plant in South Africa. High larval abundance was recorded at field sites with nearly all L. major shoots sampled ontaining larvae, with densities of up to 10 larvae per shoot. Adults laid batches of up to 15 eggs, usually on the abaxial sides of L. major leaves. The larvae mined internally, leaving the epidermal tissues of the upper and lower leaves intact. The larvae underwent three instars which took an average of 24 days and pupated within the leaf tissue, from which the adults emerged. Impact studies in the laboratory showed that H. lagarosiphon larval feeding significantly restricted the formation of L. major side branches. Based on its biology and damage caused to the plant, Hydrellia lagarosiphon could be considered as a useful biological control candidate for L. major in countries where the plant is invasive.
- Full Text:
- Date Issued: 2013
Natural enemies from South Africa for biological control of Lagarosiphon major (Ridl.) Moss ex Wager (Hydrocharitaceae) in Europe
- Baars, Jan-Robert, Coetzee, Julie A, Martin, Grant D, Hill, Martin P, Caffrey, J M
- Authors: Baars, Jan-Robert , Coetzee, Julie A , Martin, Grant D , Hill, Martin P , Caffrey, J M
- Date: 2010
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76914 , vital:30637 , https://doi.org/10.1007/s10750-010-0427-0
- Description: The non-native invasive plant, Lagarosiphon major (Hydrocharitaceae) is a submersed aquatic macrophyte that poses a significant threat to water bodies in Europe. Dense infestations prove difficult to manage using traditional methods. In order to initiate a biocontrol programme, a survey for natural enemies of Lagarosiphon was conducted in South Africa. Several phytophagous species were recorded for the first time, with at least three showing notable promise as candidate agents. Amongst these, a leaf-mining fly, Hydrellia sp. (Ephydridae) that occurred over a wide distribution causes significant leaf damage despite high levels of parasitism by braconid wasps. Another yet unidentified fly was recorded mining the stem of L. major. Two leaf-feeding and shoot boring weevils, cf. Bagous sp. (Curculionidae) were recorded damaging the shoot tips and stunting the growth of the stem. Several leaf-feeding lepidopteran species (Nymphulinae) were frequently recorded, but are expected to feed on a wide range of plant species and are not considered for importation before other candidates are assessed. The discovery of several natural enemies in the country of origin improves the biological control prospects of L. major in Europe.
- Full Text:
- Date Issued: 2010
- Authors: Baars, Jan-Robert , Coetzee, Julie A , Martin, Grant D , Hill, Martin P , Caffrey, J M
- Date: 2010
- Language: English
- Type: text , article
- Identifier: http://hdl.handle.net/10962/76914 , vital:30637 , https://doi.org/10.1007/s10750-010-0427-0
- Description: The non-native invasive plant, Lagarosiphon major (Hydrocharitaceae) is a submersed aquatic macrophyte that poses a significant threat to water bodies in Europe. Dense infestations prove difficult to manage using traditional methods. In order to initiate a biocontrol programme, a survey for natural enemies of Lagarosiphon was conducted in South Africa. Several phytophagous species were recorded for the first time, with at least three showing notable promise as candidate agents. Amongst these, a leaf-mining fly, Hydrellia sp. (Ephydridae) that occurred over a wide distribution causes significant leaf damage despite high levels of parasitism by braconid wasps. Another yet unidentified fly was recorded mining the stem of L. major. Two leaf-feeding and shoot boring weevils, cf. Bagous sp. (Curculionidae) were recorded damaging the shoot tips and stunting the growth of the stem. Several leaf-feeding lepidopteran species (Nymphulinae) were frequently recorded, but are expected to feed on a wide range of plant species and are not considered for importation before other candidates are assessed. The discovery of several natural enemies in the country of origin improves the biological control prospects of L. major in Europe.
- Full Text:
- Date Issued: 2010
- «
- ‹
- 1
- ›
- »