Copper dithiocarbamate complexes and copper sulfide nanoparticles : Synthesis, characterization and antifungal studies
- Botha, Nandipha Loveness https://orcid.org/0000-0001-8353-3512
- Authors: Botha, Nandipha Loveness https://orcid.org/0000-0001-8353-3512
- Date: 2015-01
- Subjects: Copper sulfide , Complex compounds , Nanoparticles
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24283 , vital:62598
- Description: Six dithiocarbamate ligands were synthesized from anisidine, aniline, ethyl aniline, butyl amine, morpholine and piperidine and used to synthesize homoleptic copper(II) dithiocarbamate complexes. The ligands and their corresponding complexes were characterized by conductivity measurement, FTIR and UV-Vis spectroscopy. The ligands were further characterized using NMR spectroscopy. The electronic spectra of the complexes showed that the coordination geometries around the Cu2+ ion is four coordinate square planar. FTIR spectroscopic studies indicated that the dithiocarbamate ligands are bidentately coordinated to the copper ion through the sulfur atoms with the C-S stretching frequencies changing from two peaks in the ligands to single sharp peaks in the corresponding metal complexes. The complexes were used as single source precursors to synthesize copper sulfide nanoparticles. All the six complexes were thermolysed at 180 oC to prepare copper sulfide nanoparticles and three of them were further thermolysed at 120 oC to study the effects of temperature on size and shape of the nanoparticles. All the nanoparticles were characterized with UV-Vis, PL, XRD, TEM, SEM and EDX. The optical properties of the as-prepared CuS nanoparticles showed that they are quantum confined with absorption band edges that are blue shifted compared to bulk CuS and all the as-prepared CuS nanoparticles showed narrow emission curves. The XRD diffraction patterns were indexed to the hexagonal covellite CuS crystalline phase with estimated particle sizes of 15.8-23.24 nm. These sizes are significantly different from the values, 3.02-98.94 nm obtained from TEM studies. The TEM images also showed nanoparticles with varied shapes with some agglomerations. SEM micrographs showed that the morphologies of the nanoparticles are mostly smooth surfaces and EDX spectra analyses confirmed the formation of the nanoparticles. Thermolysis of three of the complexes at 120 oC confirmed that temperature do affect the optical and structural properties of the CuS nanoparticles. Only three complexes soluble in DMSO were screened for their antimicrobial activity. Three complexes C1, C4 and C5 were screened against four fungi organisms, namely: Candida rugosa, Candida neoformans, Candida albicans and Trychophyton mucoides. All the compounds were promising as shown by the minimum inhibitory concentrations determined. C5 was the most active compound against all the organisms. They were also screened against four bacteria organisms and they were all active but not as they were against fungi organisms. , Thesis (MSc) -- Faculty of Science and Agriculture, 2015
- Full Text:
- Date Issued: 2015-01
- Authors: Botha, Nandipha Loveness https://orcid.org/0000-0001-8353-3512
- Date: 2015-01
- Subjects: Copper sulfide , Complex compounds , Nanoparticles
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24283 , vital:62598
- Description: Six dithiocarbamate ligands were synthesized from anisidine, aniline, ethyl aniline, butyl amine, morpholine and piperidine and used to synthesize homoleptic copper(II) dithiocarbamate complexes. The ligands and their corresponding complexes were characterized by conductivity measurement, FTIR and UV-Vis spectroscopy. The ligands were further characterized using NMR spectroscopy. The electronic spectra of the complexes showed that the coordination geometries around the Cu2+ ion is four coordinate square planar. FTIR spectroscopic studies indicated that the dithiocarbamate ligands are bidentately coordinated to the copper ion through the sulfur atoms with the C-S stretching frequencies changing from two peaks in the ligands to single sharp peaks in the corresponding metal complexes. The complexes were used as single source precursors to synthesize copper sulfide nanoparticles. All the six complexes were thermolysed at 180 oC to prepare copper sulfide nanoparticles and three of them were further thermolysed at 120 oC to study the effects of temperature on size and shape of the nanoparticles. All the nanoparticles were characterized with UV-Vis, PL, XRD, TEM, SEM and EDX. The optical properties of the as-prepared CuS nanoparticles showed that they are quantum confined with absorption band edges that are blue shifted compared to bulk CuS and all the as-prepared CuS nanoparticles showed narrow emission curves. The XRD diffraction patterns were indexed to the hexagonal covellite CuS crystalline phase with estimated particle sizes of 15.8-23.24 nm. These sizes are significantly different from the values, 3.02-98.94 nm obtained from TEM studies. The TEM images also showed nanoparticles with varied shapes with some agglomerations. SEM micrographs showed that the morphologies of the nanoparticles are mostly smooth surfaces and EDX spectra analyses confirmed the formation of the nanoparticles. Thermolysis of three of the complexes at 120 oC confirmed that temperature do affect the optical and structural properties of the CuS nanoparticles. Only three complexes soluble in DMSO were screened for their antimicrobial activity. Three complexes C1, C4 and C5 were screened against four fungi organisms, namely: Candida rugosa, Candida neoformans, Candida albicans and Trychophyton mucoides. All the compounds were promising as shown by the minimum inhibitory concentrations determined. C5 was the most active compound against all the organisms. They were also screened against four bacteria organisms and they were all active but not as they were against fungi organisms. , Thesis (MSc) -- Faculty of Science and Agriculture, 2015
- Full Text:
- Date Issued: 2015-01
Group 12 metal chalcogenides as single source molecular precursors for the preparation of metal sulfide nanoparticles
- Osuntokun, Jejenija https://orcid.org/0000-0003-0886-2732
- Authors: Osuntokun, Jejenija https://orcid.org/0000-0003-0886-2732
- Date: 2013-01
- Subjects: Ligands , Chalcogenides , Chemistry, Inorganic
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/27428 , vital:67295
- Description: Twelve Zn(II), Cd(II) and Hg(II) complexes of mixed ligands: alkyl thiourea, 1-ethoxylcarbonyl-1-cyanoethylene-2,2-dithiolate and tetramethylthiuram disulfide were synthesized by the reaction between the ligands and the respective metal salts. The compounds were characterized by elemental analysis, infrared (IR), 1H- and 13C-NMR spectroscopy. Four coordinate geometries were proposed for the compounds based on elemental and spectroscopic analyses. The metal complexes were at best sparingly soluble in polar coordinating solvents such as DMSO and DMF and insoluble in most organic solvents. This makes it practically impossible to grow single crystals suitable for X-ray crystallographic analysis and also resulted in extremely poor 13C-NMR spectra for some of the complexes. Thermogravimetric analysis on some of the complexes showed that they decomposed to their respective metal sulfides and thus suitable as single molecular precursors for the preparation of metal sulfide nanoparticles. Nine of the complexes with good yield were thermolysed and used as single source precursors to synthesized hexadexylamine capped metal sulfide nanoparticles. The optical and structural properties of the nanoparticles were studied using UV-Visible, photoluminescence (PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX). The absorption and emission spectra of the nanoparticles show quantum confinement. The SEM showed the morphology of the particles as nearly spherical, the EDX spectra revealed peaks corresponding to respective metal and sulfur with traces of contaminants being phosphorus from tri-n-octylphosphine (TOP). , Thesis (MSc) -- Faculty of Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013-01
- Authors: Osuntokun, Jejenija https://orcid.org/0000-0003-0886-2732
- Date: 2013-01
- Subjects: Ligands , Chalcogenides , Chemistry, Inorganic
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/27428 , vital:67295
- Description: Twelve Zn(II), Cd(II) and Hg(II) complexes of mixed ligands: alkyl thiourea, 1-ethoxylcarbonyl-1-cyanoethylene-2,2-dithiolate and tetramethylthiuram disulfide were synthesized by the reaction between the ligands and the respective metal salts. The compounds were characterized by elemental analysis, infrared (IR), 1H- and 13C-NMR spectroscopy. Four coordinate geometries were proposed for the compounds based on elemental and spectroscopic analyses. The metal complexes were at best sparingly soluble in polar coordinating solvents such as DMSO and DMF and insoluble in most organic solvents. This makes it practically impossible to grow single crystals suitable for X-ray crystallographic analysis and also resulted in extremely poor 13C-NMR spectra for some of the complexes. Thermogravimetric analysis on some of the complexes showed that they decomposed to their respective metal sulfides and thus suitable as single molecular precursors for the preparation of metal sulfide nanoparticles. Nine of the complexes with good yield were thermolysed and used as single source precursors to synthesized hexadexylamine capped metal sulfide nanoparticles. The optical and structural properties of the nanoparticles were studied using UV-Visible, photoluminescence (PL), scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD) and energy dispersive spectroscopy (EDX). The absorption and emission spectra of the nanoparticles show quantum confinement. The SEM showed the morphology of the particles as nearly spherical, the EDX spectra revealed peaks corresponding to respective metal and sulfur with traces of contaminants being phosphorus from tri-n-octylphosphine (TOP). , Thesis (MSc) -- Faculty of Science and Agriculture, 2013
- Full Text:
- Date Issued: 2013-01
Synthesis, characterization and antibacterial studies of metal complexes of substituted thiourea
- Authors: Zulu, Happy Nonkululeko
- Date: 2012-03
- Subjects: Complex compounds , Halides , Ligands
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24327 , vital:62636
- Description: Eighteen complexes Co(II), Cu(II), Zn(II), and Fe(III) with phenylthiourea, diethylthiourea, disopropylthiourea and dimethylthiourea were synthesized and characterized by elemental analysis, UV-Vis, FTIR, conductivity measurements. The complexes were formulated as either four coordinate for the metal(II) or six coordinate for Fe(III). The proposed formulations are consistent with the spectroscopic data for the complexes. The single crystal X-ray structure of the Zn(II) complex of phenylthiourea, Co(II) complex of diethylthiourea and Zn(II) complex of diisopropylthiourea are also reported. The X-ray crystal structures for these complexes revealed distorted tetrahedral geometry around the metal ions showed that the metal ions are coordinated to two molecules of the substituted thiourea through the sulphur atom and two either acetates or chlorides ions complete the four-coordinate geometry. The in vitro antibacterial activity of the complexes was studied against six bacterial strains using disc diffusion and broth micro-dilution methods. The complexes showed selective antibacterial activity. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012-03
- Authors: Zulu, Happy Nonkululeko
- Date: 2012-03
- Subjects: Complex compounds , Halides , Ligands
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/24327 , vital:62636
- Description: Eighteen complexes Co(II), Cu(II), Zn(II), and Fe(III) with phenylthiourea, diethylthiourea, disopropylthiourea and dimethylthiourea were synthesized and characterized by elemental analysis, UV-Vis, FTIR, conductivity measurements. The complexes were formulated as either four coordinate for the metal(II) or six coordinate for Fe(III). The proposed formulations are consistent with the spectroscopic data for the complexes. The single crystal X-ray structure of the Zn(II) complex of phenylthiourea, Co(II) complex of diethylthiourea and Zn(II) complex of diisopropylthiourea are also reported. The X-ray crystal structures for these complexes revealed distorted tetrahedral geometry around the metal ions showed that the metal ions are coordinated to two molecules of the substituted thiourea through the sulphur atom and two either acetates or chlorides ions complete the four-coordinate geometry. The in vitro antibacterial activity of the complexes was studied against six bacterial strains using disc diffusion and broth micro-dilution methods. The complexes showed selective antibacterial activity. , Thesis (MSc) -- Faculty of Science and Agriculture, 2012
- Full Text:
- Date Issued: 2012-03
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24365 , vital:62645
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to- electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24365 , vital:62645
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to- electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
Functionalized Ru(II) polypyridines and phthalocyanines: Potential dyes for dye-sensitized solar cells(DSSCs)
- Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24343 , vital:62638
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to-electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- Authors: Adeloye, Adewale Olufunsho https://orcid.org/0000-0003-1736-5738
- Date: 2011-01
- Subjects: Phthalocyanines , Dye-sensitized solar cells
- Language: English
- Type: Doctoral theses , text
- Identifier: http://hdl.handle.net/10353/24343 , vital:62638
- Description: This study describes the design, synthesis, characterization and preliminary investigation of the solar-to-electrical energy conversion efficiency of ruthenium(II) functionalized polypyridine and phthalocyanine complexes with extended π-conjugation. Polypyridinyl functionalized with anthracene, 2,3-dimethylacrylic acid and 1-methoxy-1-buten-3-yne were synthesized and characterized by infrared, UV-Vis, photoluminescence, 1H and 13C NMR and elemental analysis. The functionalized polypyridine molecules were used to synthesize various ruthenium(II) homoleptic/heteroleptic and/or heteronuclear complexes and their photophysical and electrochemical properties evaluated. The preliminary results of the solar-to-electrical conversion efficiencies of some synthesized Ru(II) polypyridyl complexes were presented in chapter 5. It was found out as expected that the ruthenium(II) polypyridine complexes containing either heteronuclear polypyridine ligands or their thiocyanate analogues of the types [Ru(L1)2L2(PF6)2], [RuL1(L2)2(PF6)2] and [RuL1L2(NCS)2], showed better photophysical properties (red-shifted metal-to-ligand charge-transfer (MLCT) transitions concomitant with enhanced molar extinction coefficients), luminescence and interesting electrochemical redox properties than those containing homonuclear ligand types [Ru(L1)3(PF6)2]. The ruthenium(II) anthracenyl functionalized phthalocyanine complexes which were obtained by electrophilic aromatic substitution reactions in the peripheral positions gave good solubility properties in various organic solvents and also showed interesting near infrared absorption and electroredox characteristics. Cyclic and square wave voltammetries of these complexes revealed major redox processes and the numbers of electron(s) transfer were determined by chronocoulometry. It was established that a mono- and/or multi-electronic transfer reactions can occur in the various ruthenium(II) complexes. The photophysical properties of some complexes showed them to be better and promising candidates in the design of chemosensors, organic light emitting diodes (OLEDs) and as photosensitizers, while their redox-active natures make them potential mediators in electron-transfer for various photochemical processes. However, due to low surface concentration and/or adsorption of some tested complexes on TiO2 semiconductor nanocrystalline particle, low currents were generated and the highest solar-to-electrical conversion efficiency recorded in this study was 0.10 percent. , Thesis (PhD) -- Faculty of Science and Agriculture, 2011
- Full Text:
- Date Issued: 2011-01
- «
- ‹
- 1
- ›
- »