Effects of polarization in a distributed raman fibre amplifier
- Authors: Muguro, Kennedy Mwaura
- Date: 2011
- Subjects: Fiber optics , Polarization (Light) , Optical communications , Optical amplifiers , Raman effect
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10544 , http://hdl.handle.net/10948/d1014621
- Description: The need to exploit the large fibre bandwidth and increase the reach has seen the application of the Raman fibre amplifier (RFA) become indispensable in modern light wave systems. The success and resilience of RFAs in optical communication is deeply rooted in their unique optical properties and new technologies which have allowed the amplifier to come of age. However, the full potential of RFAs in optical communication and other applications are yet to be realized. More so are its polarization properties which still remain largely unexploited and have not been fully understood. In this work, fundamental issues regarding distributed RFA have been investigated with the aim of acquiring a better understanding of the amplifier polarization characteristics which have potential applications. In particular the effects of polarization mode dispersion (PMD) and polarization dependent loss (PDL) have been demonstrated both by simulation and experiment. The possibility of Raman polarization pulling in single mode fibres (SMFs) has also been addressed. Polarization sensitivity of RFA has been known for a long time but the clear manifestation of it has become evident in the advent of modern low PMD fibre. Unlike EDFAs which make use of special doped fibre, RFAs require no special fibre for operation. Besides, RFA uses a very long length of fibre and as such the fibre polarization characteristics come into play during amplification. In the demonstrations presented in this thesis a fibre of PMD coefficient < 0.05 pskm-1/2 was regarded as low PMD fibre while one having coefficient ≥ 0.05 pskm-1/2 was categorized to have high PMD unless otherwise stated. Several experiments were performed to evaluate the RFA gain characteristics with respect to fibre PMD and the system performance in the presence of noise emanating from amplified spontaneous emission (ASE). Analysis of Raman gain statistics was done for fibres of low and high PMD coefficients. The statistics of PDG and on-off gain were eventually used to demonstrate the extraction of PMD coefficients of fibres between 0.01- 0.1 pskm-1/2 using a forward pumping configuration. It was found that, at increasing pump power a linear relationship exists between forward and backward signal gain on a dB scale. The interaction of PDL and Raman PDG in the presence of PMD were observed at very fundamental level. It was found the presence of PDL serves to reduce the available on-off gain. It was also established that the presence of PMD mediates the interaction between PDG/PDL. When PMD is high it reduces PDG but the presence of PDL introduces a wavelength dependent gain tilting for WDM channels. Further analysis revealed that signal polarization is influenced by the pump SOP due to the pulling effect which is present even at moderate pump power.
- Full Text:
- Date Issued: 2011
- Authors: Muguro, Kennedy Mwaura
- Date: 2011
- Subjects: Fiber optics , Polarization (Light) , Optical communications , Optical amplifiers , Raman effect
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10544 , http://hdl.handle.net/10948/d1014621
- Description: The need to exploit the large fibre bandwidth and increase the reach has seen the application of the Raman fibre amplifier (RFA) become indispensable in modern light wave systems. The success and resilience of RFAs in optical communication is deeply rooted in their unique optical properties and new technologies which have allowed the amplifier to come of age. However, the full potential of RFAs in optical communication and other applications are yet to be realized. More so are its polarization properties which still remain largely unexploited and have not been fully understood. In this work, fundamental issues regarding distributed RFA have been investigated with the aim of acquiring a better understanding of the amplifier polarization characteristics which have potential applications. In particular the effects of polarization mode dispersion (PMD) and polarization dependent loss (PDL) have been demonstrated both by simulation and experiment. The possibility of Raman polarization pulling in single mode fibres (SMFs) has also been addressed. Polarization sensitivity of RFA has been known for a long time but the clear manifestation of it has become evident in the advent of modern low PMD fibre. Unlike EDFAs which make use of special doped fibre, RFAs require no special fibre for operation. Besides, RFA uses a very long length of fibre and as such the fibre polarization characteristics come into play during amplification. In the demonstrations presented in this thesis a fibre of PMD coefficient < 0.05 pskm-1/2 was regarded as low PMD fibre while one having coefficient ≥ 0.05 pskm-1/2 was categorized to have high PMD unless otherwise stated. Several experiments were performed to evaluate the RFA gain characteristics with respect to fibre PMD and the system performance in the presence of noise emanating from amplified spontaneous emission (ASE). Analysis of Raman gain statistics was done for fibres of low and high PMD coefficients. The statistics of PDG and on-off gain were eventually used to demonstrate the extraction of PMD coefficients of fibres between 0.01- 0.1 pskm-1/2 using a forward pumping configuration. It was found that, at increasing pump power a linear relationship exists between forward and backward signal gain on a dB scale. The interaction of PDL and Raman PDG in the presence of PMD were observed at very fundamental level. It was found the presence of PDL serves to reduce the available on-off gain. It was also established that the presence of PMD mediates the interaction between PDG/PDL. When PMD is high it reduces PDG but the presence of PDL introduces a wavelength dependent gain tilting for WDM channels. Further analysis revealed that signal polarization is influenced by the pump SOP due to the pulling effect which is present even at moderate pump power.
- Full Text:
- Date Issued: 2011
Polarization mode dispersion emulation and the impact of high first-order PMD segments in optical telecommunication systems
- Authors: Musara, Vitalis
- Date: 2009
- Subjects: Optical communications , Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10519 , http://hdl.handle.net/10948/1138 , Optical communications , Fiber optics , Polarization (Light)
- Description: In this study, focus is centred on the measurement and emulation of first-order (FO-) and second-order (SO-) polarization mode dispersion (PMD). PMD has deleterious effects on the performance of high speed optical transmission network systems from 10 Gb/s and above. The first step was characterising deployed fibres for PMD and monitoring the state of polarization (SOP) light experiences as it propagates through the fibre. The PMD and SOP changes in deployed fibres were stochastic due to varying intrinsic and extrinsic perturbation changes. To fully understand the PMD phenomenon in terms of measurement accuracy, its complex behaviour, its implications, mitigation and compensation, PMD emulation is crucial. This thesis presents emulator designs which fall into different emulator categories. The key to these designs were the PMD equations and background on the PMD phenomenon. The cross product from the concatenation equation was applied in order to determine the coupling angle β (between 0o and 180o) that results in the SO-PMD of the emulator designs to be either adjustable or fixed. The digital delay line (DDL) or single polarization maintaining fibre (PMF) section was used to give a certain amount of FO-PMD but negligible SO-PMD. PMF sections (birefringent sections) were concatenated together to ensure FO- and SO-PMD coexist, emulating deployed fibres. FO- and SO-PMD can be controlled by altering mode coupling (coupling angles) and birefringence distribution. Emulators with PMD statistics approaching the theoretical distributions had high random coupling and several numbers of randomly distributed PMF sections. In addition, the lengths of their PMF sections lie within 20% standard deviation of the mean emulator length. Those emulators with PMD statistics that did not approach the theoretical distributions had limited numbers of randomly distributed PMF sections and mode coupling. Results also show that even when an emulator has high random mode coupling and several numbers of randomly distributed PMFs, its PMD statistics deviates away from expected theoretical distributions in the presence of polarization dependent loss (PDL). The emulators showed that the background autocorrelation function (BACF) approaches zero with increasing number of randomly mode coupled fibre sections. A zero BACF signifies that an emulator has large numbers of randomly distributed PMF sections and its presence means the opposite. The availability of SO-PMD in the emulators made the autocorrelation function (ACF) x asymmetric. In the absence of SO-PMD the ACF for a PMD emulator is symmetric. SO-PMD has no effect on the BACF. Polarization-optical time domain reflectometry (P-OTDR) measurements have shown that certain fibre sections along fibre link lengths have higher FO-PMD (HiFO-PMD) than other sections. This study investigates the impact of a HiFO-PMD section on the overall FO- and SO-PMD, the output state of polarization (SOP) and system performance on deployed fibres (through emulation). Results show that when the wavelength-independent FO-PMD vector of the HiFO-PMD section is greater than the FO-PMD contributions from the rest of the fibre link, the mean FO-PMD of the entire link is biased towards that of the HiFO-PMD section and the SO-PMD increases (β ≠ 0o or 180o) or remains fixed (β = 0o or 180o) depending on the coupling angle β between the HiFO-PMD section and the rest of the fibre link. In addition, the FO-PMD statistics deviates away from the theoretical Maxwellian distribution. However, experimental results show that the HiFO-PMD section has negligible influence on the SOPMD statistical distribution. An increase in the amount of FO-PMD on a HiFO-PMD section reduces the output SOP spread to a given minimum, in this study the minimum was reached when the HiFO-PMD ≥ 35 ps. However, the outcome of the output SOP spread depends on the location of the HiFO-PMD section along the fibre link length. It was found that when the HiFO-PMD section introduces SO-PMD, the bit error rate (BER) is much higher compared to when it does not introduce SO-PMD.
- Full Text:
- Date Issued: 2009
- Authors: Musara, Vitalis
- Date: 2009
- Subjects: Optical communications , Fiber optics , Polarization (Light)
- Language: English
- Type: Thesis , Doctoral , PhD
- Identifier: vital:10519 , http://hdl.handle.net/10948/1138 , Optical communications , Fiber optics , Polarization (Light)
- Description: In this study, focus is centred on the measurement and emulation of first-order (FO-) and second-order (SO-) polarization mode dispersion (PMD). PMD has deleterious effects on the performance of high speed optical transmission network systems from 10 Gb/s and above. The first step was characterising deployed fibres for PMD and monitoring the state of polarization (SOP) light experiences as it propagates through the fibre. The PMD and SOP changes in deployed fibres were stochastic due to varying intrinsic and extrinsic perturbation changes. To fully understand the PMD phenomenon in terms of measurement accuracy, its complex behaviour, its implications, mitigation and compensation, PMD emulation is crucial. This thesis presents emulator designs which fall into different emulator categories. The key to these designs were the PMD equations and background on the PMD phenomenon. The cross product from the concatenation equation was applied in order to determine the coupling angle β (between 0o and 180o) that results in the SO-PMD of the emulator designs to be either adjustable or fixed. The digital delay line (DDL) or single polarization maintaining fibre (PMF) section was used to give a certain amount of FO-PMD but negligible SO-PMD. PMF sections (birefringent sections) were concatenated together to ensure FO- and SO-PMD coexist, emulating deployed fibres. FO- and SO-PMD can be controlled by altering mode coupling (coupling angles) and birefringence distribution. Emulators with PMD statistics approaching the theoretical distributions had high random coupling and several numbers of randomly distributed PMF sections. In addition, the lengths of their PMF sections lie within 20% standard deviation of the mean emulator length. Those emulators with PMD statistics that did not approach the theoretical distributions had limited numbers of randomly distributed PMF sections and mode coupling. Results also show that even when an emulator has high random mode coupling and several numbers of randomly distributed PMFs, its PMD statistics deviates away from expected theoretical distributions in the presence of polarization dependent loss (PDL). The emulators showed that the background autocorrelation function (BACF) approaches zero with increasing number of randomly mode coupled fibre sections. A zero BACF signifies that an emulator has large numbers of randomly distributed PMF sections and its presence means the opposite. The availability of SO-PMD in the emulators made the autocorrelation function (ACF) x asymmetric. In the absence of SO-PMD the ACF for a PMD emulator is symmetric. SO-PMD has no effect on the BACF. Polarization-optical time domain reflectometry (P-OTDR) measurements have shown that certain fibre sections along fibre link lengths have higher FO-PMD (HiFO-PMD) than other sections. This study investigates the impact of a HiFO-PMD section on the overall FO- and SO-PMD, the output state of polarization (SOP) and system performance on deployed fibres (through emulation). Results show that when the wavelength-independent FO-PMD vector of the HiFO-PMD section is greater than the FO-PMD contributions from the rest of the fibre link, the mean FO-PMD of the entire link is biased towards that of the HiFO-PMD section and the SO-PMD increases (β ≠ 0o or 180o) or remains fixed (β = 0o or 180o) depending on the coupling angle β between the HiFO-PMD section and the rest of the fibre link. In addition, the FO-PMD statistics deviates away from the theoretical Maxwellian distribution. However, experimental results show that the HiFO-PMD section has negligible influence on the SOPMD statistical distribution. An increase in the amount of FO-PMD on a HiFO-PMD section reduces the output SOP spread to a given minimum, in this study the minimum was reached when the HiFO-PMD ≥ 35 ps. However, the outcome of the output SOP spread depends on the location of the HiFO-PMD section along the fibre link length. It was found that when the HiFO-PMD section introduces SO-PMD, the bit error rate (BER) is much higher compared to when it does not introduce SO-PMD.
- Full Text:
- Date Issued: 2009
- «
- ‹
- 1
- ›
- »