Applicability of putative probiotic bacteria to replace antibiotics as growth promoters in commercial and indigenous piglets
- Authors: Dlamini, Ziyanda Confidence
- Date: 2017
- Subjects: Antibiotics , Dietary supplements , Piglets
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10353/11428 , vital:39071
- Description: Antibiotic use in pig production contributes to development of antimicrobial resistance in food animals and risk of antibiotic residues in animal food products. The use of probiotics appears to be the potential alternative to antibiotics. This work is designed to validate the applicability of administered direct-fed putative probiotic strains of Lactobacillus reuteri ZJ625, Lactobacillus reuteri VB4, Lactobacillus salivarius ZJ614 and Streptococcus salivarius NBCR 13956 on growth performance, hematological parameters, and antibody stimulation in weaned commercial and indigenous pigs. Forty-five weaned piglets were divided into five treatment experimental groups as follows: Diet with: antibiotic (PC), No antibiotic and no probiotic (NC), Probiotic (P1) (P2) combination of probiotics (P3). Piglets’ performance were monitored during the trial. Faecal and ileum samples were collected for microbial count analysis. Blood samples were collected from the sacrificed piglets at the end of the trial, for the hematological and biochemical analysis and probiotics ability to stimulate immunoglobulin G (IgG). Four probiotic strains were tested for cell surface hydrophobicity against xylene, chloroform and ethyl acetate. The strains were also tested for auto-aggregation and co-aggregation abilities. Enterococcus faecalis ATCC 29212 was used as a control pathogen in the co-aggregation ability test. The probiotic strains were also screened for presence of virulence and resistance genes. DNA was extracted from all the four probiotic strains using ZR Fungal/Bacterial DNA MiniPepTM (Zymo Research, USA) following manufacturer’s instructions. The DNA samples were later amplified in PCR reactions with specific primers to detect virulence genes of adhesion collagen protein (ace), aggregation substances (agg and asa); antibiotic resistance genes of: Vancomycin vanA, Vancomycin vanC1 and Vancomycin vanC2/3. The data was analyzed by one-way ANOVA using SAS statistics software (SAS 9.3) (2003). Results from the study revealed that supplementation of probiotics had no effect on feed intake (FI) in all of the experimental groups. However, supplementation of probiotics in P3 treatment resulted in greater average daily gain (ADG) and improved feed conversion ratio (FCR) of weaned piglets (p < 0.05). Microbial count of fecal samples from all the treatment groups did not differ while ileum samples had lower enteric bacteria in P3 group as compared to other treatments. Concentration of albumin, globulin, neutrophils and basophils were high in NC treatment compared to other treatments. (p < 0.05). IgG concentration was highest in P3 compared to other treatment (p < 0.05). All probiotics strains showed high hydrophobicity to all solvents used in the test. Cell Surface Hydrophobic was highest in xylene (78percent – 84percent), followed by chloroform (68percent – 75percent) and lowest in ethyl acetate (52percent - 60percent). All of the test strains showed high auto-aggregation ability after 4 hr of incubation. L .reuteri VB4 exhibited highest auto-aggregation ability of 70percent, while the least auto-aggregation ability of 60percent was observed for L. salivarius ZJ614. In the co-aggregation assays, all probiotic bacterial strains exhibited a strong co-aggregation of 45percent to 56percent after 4 hr of incubation at 37 °C. L. reuteri VB4 exhibited highest co-aggregation ability while L. salivarius ZJ614 exhibited the lowest co-aggregation ability. No presence of virulence genes ace and asa was detected in all of the putative probiotic strains, but agg virulence gene was detected in L. reuteri VB4 strains. L. reuteri VB4 and S. salivarius NBRC13956 had resistance genes vanC 2/3 and vanC1, respectively. Overall, the results from this study, suggest that the candidate probiotics strains have enhanced the growth and measured blood parameters of the weaned piglets used in these experiments, and also, the probiotic strains have the abilities to initiate the stimulation of IgG. Probiotics could be used as a novel alternative to antibiotics in the animal nutrition and production, with the abilities to confer health benefits and promote growth. The outcome of the research advocates that these probiotics will be beneficial to pig production, and might outcompete the current antibiotics in use as growth promoters. One of the major advantages of probiotics to pig industry is the production of antibiotic free and good quality pork meat to local and international consumers, thus, enhancing South African Pork industry.
- Full Text:
Comparative in-vitro activities of trimethoprimsulfamethoxazole and the new fluoroquinolones against confirmed extended spectrum beta-lactamase producing Stenotrophomonas maltophilia in Nkonkobe Municipality, Eastern Cape environment
- Authors: Adeyemi, Oluwatosin Oluwakemi
- Date: 2012
- Subjects: Antibiotics , Microbial sensitivity tests , Drug resistance in microorganisms , Pathogenic microorganisms , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11275 , http://hdl.handle.net/10353/d1007576 , Antibiotics , Microbial sensitivity tests , Drug resistance in microorganisms , Pathogenic microorganisms , Gram-negative bacterial infections
- Description: Stenotrophomonas maltophilia is increasingly emerging as an opportunistic pathogen of global concern. Due to its inherent resistance to several classes of antibiotics including carbapenems and its ability to acquire mobile resistance elements, treatment of infections caused by S. maltophilia is a constant challenge for clinicians. Trimethoprim-sulphamethoxazole (TMP-SMX) is the generally accepted antibiotic of choice for the treatment of infections caused by this organism, but resistance to the drug is increasingly being reported; hence, the need for alternative therapeutic options. In this study, the antimicrobial susceptibility profile of 110 commensal S. maltophilia isolates obtained from Nkonkobe municipality, Eastern Cape Province, Republic of South Africa was investigated. Twenty-one antibiotics including TMP-SMX and the newer fluoroquinolones; levofloxacin, gatifloxacin and moxifloxacin were included in the antibiotic panel. About 63.4 percent of the isolates were susceptible to TMP-SMX with a resistance rate of 28.2 percent. The fluoroquinolones were more effective with susceptibilities ranging from 76 percent to 94.7 percent. Resistance to the fluoroquinolones ranged from 1.3 percent to 2.7 percent. Levofloxacin was the most effective fluoroquinolone tested. Phenotypic dectection of extended spectrum β-lactamases (ESBLs) showed double disc synergy test (DDST) positivity in 59.5 percent of the isolates. Cefepime was the most sensitive indicator cephalosporin in the DDST with 77.3 percent of suspected ESBL-producing isolates showing cefepime-clavulanic acid synergy. Isolates exhibited nine different ESBL phenotypes, however, PCR amplification of the bla genes revealed four isolates that possessed genes belonging to the CTX-M group (CTX-M-1 and CTX-M-8 groups). ESBL genes are usually carried on mobile elements such as plasmids and transposons which may also bear genes that mediate resistance to aminoglycosides, tetracyclines, TMP-SMX and fluoroquinolones. ESBL positive isolates appeared more susceptible to the fluoroquinolones compared to TMP-SMX but there was no significant relationship between ESBL production and susceptibility to these drugs (p > 0.05). The newer fluoroquinolones are a possible alternative treatment option for S. maltophilia infections in this environment but further studies and clinical investigations are needed to determine the in vivo efficacy of these drugs.
- Full Text:
Phytochemical analysis and bioactivity of Garcinia Kola (Heckel) seeds on selected bacterial pathogens
- Authors: Seanego, Christinah Tshephisho
- Date: 2012
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11259 , http://hdl.handle.net/10353/420 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants , Microbial sensitivity tests , Streptococcal infections , Streptococcus , Staphylococcus aureus infections , Salmonella typhimurium , Traditional medicine
- Description: Garcinia kola is one of the plants used in folklore remedies for the treatment of microbial infections. Bacterial resistance to commonly used antibiotics has necessitated the search for newer and alternative compounds for the treatment of drug resistant microbial infections. This study focuses on the bioactivity of G. kola seeds on Streptococcus pyogenes (ATCC 49399), Staphylococcus aureus (NCTC 6571), Plesiomonas Shigelloides (ATCC 51903) and Salmonella typhimurium (ATCC 13311), organisms which can cause illnesses from mild to severe with potentially fatal outcomes. The crude ethyl acetate, ethanol, methanol, acetone and aqueous extracts were screened by agar-well diffusion method and the activities of the extract were further determined by Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays. The inhibition zones ranged from 0 - 24 mm, while MIC and MBC of the extract ranged between 0.04 - 1.25 mg/mL and 0.081 - 2.5 mg/mL respectively. Chloroform/ Ethyl Acetate/ Formic acid (CEF) solvent system separated more active compounds followed by Ethyl Acetate/ Methanol/ Water (EMW) and Benzene/ Ethanol/ Ammonium Hydroxide (BEA). The extracts were fractionated by Thin Layer Chromatography (TLC). Bioautography was used to assess the activity of the possible classes of compounds present in the more active extracts. Column chromatography was used to purify the active compounds from the mixture while Gas Chromatography-Mass Spectrometry (GC-MS) was used to identify the phyto components of the fractions. The MIC of the fractions ranged between 0.0006 - 2.5 mg/mL. CEF 3 (F3), CEF 11 (F11) and CEF 12 (F12) revealed the presence of high levels fatty acids Linoleic acid, 1, 2-Benzenedicarboxylic acid and 2, 3-Dihydro-3, 5-dihydroxy-6-methyl, respectively. The results obtained from this study justify the use of this plant in traditional medicine and provide leads which could be further exploited for the development of new and potent antimicrobials.
- Full Text:
Assessment of the antibacterial properties of n-Hexane extract of Cocos Nucifera and its interactions with some conventional antibiotics
- Authors: Akinyele, Taiwo Adesola
- Date: 2011
- Subjects: Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11245 , http://hdl.handle.net/10353/416 , Coconut palm , Microbial sensitivity tests , Gram-negative bacterial infections , Vibrio infections , Antibiotics , Hexane , Extracts
- Description: Cocos nucifera belong to the family Aracaceae (palm Family). The English name is coconut and it is used extensively as medicinal remedies against infections such as urinary tract infections, gastro intestinal infections, skin and wound infections. The in vitro antibacterial (including anti-listerial and anti-vibrio) properties as well as the evaluation of the combination potentials of the plant extract with six front-line antibiotics were evaluated in this study using standard procedures. The in vitro anti-listerial properties of the crude aqueous and n-Hexane extract of the husk of Cocos nucifera were carried out against 37 Listeria isolates. Twenty-nine of the test organisms were susceptible to the aqueous extract while thirty were susceptible to the n-Hexane extract both at the screening concentration of 25 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.6 - 5.0 mg/ml. For the aqueous extract, average log reduction in viable cell count ranged between 0.32 Log10 and 4.8 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 2.4 Log10 and 6.2 Log10 CFU/ml after 8 hours interaction in 1 × MIC and 2 × MIC. The time-kill characteristics of the two extracts suggest that at higher concentration (2 × MIC) and longer duration of interaction (8 hr), more bacteria were killed. In vitro anti-vibrio and antibacterial properties experiment revealed that of all the 45 vibrio and 25 bacteria strains that was tested, 37 were susceptible to the aqueous extract and 38 to the n-Hexane extract, while 17 were susceptible to the aqueous extract and 21 to the n-Hexane extract. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.3 - 5.0 mg/ml. viii The time kill studies revealed that for the aqueous extract, average log reduction in viable cell count in time kill assay ranged between 0.12 Log10 and 4.2 Log10 CFU/ml after 8 hr interaction at 1 × MIC and 2 × MIC. For the n-Hexane extract, the log reduction ranged between 0.56 Log10 and 6.4 Log10 CFU/ml after 8 hr interaction in 1 × MIC and 2 × MIC. In the test for the combination interactions, the checkerboard method revealed synergy of 67% and indifferent of 33%, while the time kill assay detected synergy in 72% and indifferent in 28% of the combinations tested. The synergy detected was not specific to any of the antibiotics or the Gram reaction of the bacteria, and no antagonism was detected. We conclude that the aqueous and n-Hexane extract of the husk of C. nucifera contains potential broad spectrum antibiotics resistance modulating compounds that could be relevant in the treatment of infections caused by these pathogens. In addition, the husk which is being discarded as agro waste will opens up a vista of opportunities for utilization for therapeutic purposes
- Full Text:
In-vitro anti-vibrio activities of crude extracts of Garcinia Kola seeds
- Authors: Penduka, Dambudzo
- Date: 2011
- Subjects: Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11256 , http://hdl.handle.net/10353/405 , Microbial sensitivity tests , Drug resistance in microorganisms , Antibiotics , Garcinia , Medicinal plants
- Description: The n-Hexane, dichloromethane, methanol and aqueous crude extracts of Garcinia kola (Heckel) seeds were screened for their anti-Vibrio activities against 50 Vibrio bacteria isolated from wastewater final effluents. The 50 isolates consisted of different Vibrio species namely V. fluvialis (14), V. vulnificus (12), V. parahaemolyticus (12), V. metschnikovii (3) and 9 others unidentified to the specie level. The n-Hexane, dichloromethane and methanol extracts had activities against 16 (32 percent) of the Vibrio isolates, while the aqueous extracts had activities against 12 (24 percent) all at a screening concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) were 0.313-0.625 mg/ml, 0.313-0.625 mg/ml, 0.313-2.5 mg/ml and 10 mg/ml for n-Hexane, dichloromethane, methanol and aqueous extracts respectively. Rate of kill studies were carried out against three different Vibrio species namely V. vulnificus (AL042), V. parahaemolyticus (AL049) and V. fluvialis ( AL040) using the n-Hexane, dichloromethane and methanol extracts at 1× to 4 × MICs and 2 hour exposure. About 96.3 percent, 82.2 percent, and 78.1 percent (V. fluvialis AL040); 92.6 percent, 87.8 percent and 68.9 percent (V. parahaemolyticus AL049); and 91.6 percent, 64.4 percent, 60 percent (V. vulnificus AL042) of the bacteria were killed by the crude n-Hexane, dichloromethane and methanol extracts respectively after 2 hour exposure time at 4× MIC. The patterns of activity were bacteriostatic, with the n-Hexane extracts being most effective in activity. We conclude that the Garcinia kola seeds have promise in the treatment and management of infections caused by Vibrio species.
- Full Text:
Phytochemical analysis and bioactivity of selected South African medicinal plants on clinical isolates of Helicobacter pylori
- Authors: Njume, Collise
- Date: 2011
- Subjects: Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11260 , http://hdl.handle.net/10353/449 , Helicobacter pylori , Medicinal plants -- Biotechnology , Traditional medicine -- South Africa -- Eastern Cape , Antibiotics , Drug resistance in microorganisms , Extracts , Helicobacter pylori infections
- Description: Medicinal plants have been used as traditional medicine in the treatment of numerous human diseases for thousands of years in many parts of the world. In the developing world, especially in rural areas, herbal remedies continue to be a primary source of medicine. Scientifically, medicinal plants have proven to be an abundant source of biologically active compounds, many of which have already been formulated into useful therapeutic substances or have provided a basis for the development of new lead molecules for pharmaceuticals. Antibiotic resistance, undesireable side effects and expences associated with the use of combination therapy in the treatment of Helicobacter pylori infections have generated a considerable interest in the study of medicinal plants as potential sources of new drugs against this organism. The high complexicity of bioactive compounds accumulated in plants coupled with their broad antimicrobial activity may make it difficult for pathogenic organisms, including H. pylori to acquire resistance during treatment. This study therefore evaluates the antimicrobial potential of selected South African medicinal plants employed in the treatment of H. pylori-related infections, and the subsequent isolation of the plant active principles. An ethnobotanical survey of plants used in the treatment of H. pylori-related infections was conducted in the study area. Crude extracts of Combretum molle, Sclerocarya birrea, Garcinia kola, Alepidea amatymbica and 2 Strychnos species were screened against 30 clinical strains of H. pylori and 2 standard control strains (NCTC 11638 and ATCC 43526). In the preliminary stages of this study, ethyl acetate, acetone, ethanol, methanol and water extracts of the plants were tested against H. pylori by agar well diffusion and micro broth dilution methods. The plant crude extracts that exhibited anti-H. pylori activity with a iv percentage susceptibility of 50 percent and above were considered for the rate of kill assays and the most active crude extracts selected for bio-assay guided isolation of the active ingredient. Preliminary fractionation of the crude extract was achieved by thin layer chromatography (TLC) using different solvent combinations; hexane/diethylether (HDE), ethyl acetate/methanol/water (EMW) and chloroform/ethyl acetate/formic acid (CEF) in order to determine the most suitable combination for column chromatography (CC) and subsequent testing by indirect bioautography. The extract was then fractionated in a silica gel column using previously determined solvent combinations as eluent. Active fractions obtained from column chromatography separations were further fractionated and the compounds identified by gas chromatography/mass spectrometry (GC/MS) analysis. All the plants exhibited antimicrobial activity against H. pylori with zone of inhibition diameters ranging from 0 - 38 mm and minimum inhibitory concentration (MIC) values ranging from 0.06 - 5.0 mg/mL. The most active plant extracts were the acetone extract of C. molle with a percentage susceptibility of 87.1 percent, acetone and aqueous extracts of S. birrea (71 percent each) and the ethanolic extracts of G. kola (53.3 percent). Except for the aqueous extract, these extracts also exhibited a strong bactericidal activity against H. pylori at different concentrations. TLC analysis revealed the presence of 9 components in the acetone extract of S. birrea with the EMW solvent system as opposed to 5 and 8 with HDE and CEF respectively. Bioassay-guided isolation led to the identification of 52 compounds from the acetone extract of S. birrea with n-octacosane being the most abundant (41.68 percent). This was followed by pyrrolidine (38.91 percent), terpinen-4-ol (38.3 percent), n-eicosane (24.98 percent), cyclopentane (16.76 percent), n-triacontane (16.28 percent), aromadendrene (13.63 percent) and α-gujunene (8.77 percent). Terpinen-4-ol and pyrrolidine demonstrated strong antimicrobial activity against H. pylori at all concentrations tested. These results may serve as preliminary scientific validation of the ethnomedicinal uses of the above mentioned plants in the treatment of H. pylori-related infections in South Africa. Terpinen-4-ol and pyrrolidine could be considered for further evaluation as therapeutic or prophylactic agents in the treatment of H. pylori-related infections. However, further investigations would be necessary to determine their toxicological properties, in-vivo potencies and mechanism of action against H.pylori
- Full Text:
Phytochemical analysis and bioactivity of the stem bark of Combretum Molle on some selected bacterial pathogens
- Authors: Nyenje, Mirriam, E
- Date: 2011
- Subjects: Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11261 , http://hdl.handle.net/10353/391 , Drug resistance in microorganisms , Materia medica, Vegetable , Antibiotics , Microbial sensitivity tests , Gram-negative bacterial infections
- Description: Antimicrobial resistance is a worldwide problem that has deleterious long-term effects as the development of drug resistance outpaces the development of new drugs. Plants have been used for many generations for healing purposes, and screening of extracts of these plants has often yielded positive outcomes. This study was aimed at isolating and characterizing the major active antimicrobial compounds present in the stem bark of C. molle, in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs. Various solvents (hexane, ethyl acetate, dichloromethane, acetone, ethanol and methanol) were used for extraction. The agar well diffusion technique was used to screen for antimicrobial activity of C. molle extracts against Streptococcus pyogenes ATCC 49399, Plesiomonas shigelloides ATCC 51903, Pseudomonas aeruginosa ATCC 15442, Helicobacter pylori ATCC 43526 and Helicobacter pylori 252C (clinical isolate); minimum inhibition concentration (MIC) of the most active extracts was determined by the broth dilution method. Fractionation of acetone extract was done by thin layer chromatography (TLC) and bioautography to determine the compounds present and their antimicrobial activity respectively. The acetone extract was purified by column chromatography and their MIC determined. The most potent fraction (EA4) was subjected to Gas chromatography- Mass spectrometry (GC-MS) and High performance liquid chromatography (HPLC) for identification of the active compounds. Results were analyzed by the Fisher‟s exact test. All the extracts tested demonstrated antimicrobial activity with zone diameters of inhibition ranging from 0–32 mm. Acetone was the most potent extract with its MIC ranging from 0.078–5.0 mg/mL. Seventeen fractions were collected from column chromatography and the most active fraction against all the organisms was EA 4 (eluted with 100 percent ethyl acetate), with its MIC ranging from 0.078 - 2.5mg/mL. There was no statistically significant difference (P>0.05) in the potency of the xii four extracts (acetone, methanol, ethanol and ethyl acetate) and antibiotic (ciprofloxacin) on the different bacterial strains tested, likewise the crude extract and the fractions. No compound was detected by GC-MS whereas numerous peaks were identified by HPLC implying that the active compounds in this plant are non volatile. We could not identify the compounds thereby proposing further studies using Nuclear magnetic resonance to identify the compounds. The study revealed that the acetone extract of C. molle was the most active against all the test organisms and therefore justifies the use of this plant in traditional medicine.
- Full Text:
Assessment of antibiotic production by some marine Streptomyces isolated from the Nahoon Beach
- Authors: Ogunmwonyi, Isoken Nekpen Henrietta
- Date: 2010
- Subjects: Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11243 , http://hdl.handle.net/10353/264 , Streptomyces , Actinobacteria , Gram-positive bacteria , Antibiotics , Antibiotics -- Testing , Drug resistance in microorganisms
- Description: Rapidly emerging strains of bacteria resistant to most advanced antibiotics have become issues of very important public health concern. Research currently directed towards marine actinomycetes presents a vast potential for new compounds that could be able to safely and effectively target resistant species. In this regard, ten putative Streptomyces strains isolated from the Nahoon beach were selected and assessed for antibiotic production and activity against a wide range of bacteria including reference strains, environmental strain and clinical isolates. The ethyl acetate extracts of the putative Streptomyces isolates showed activities against at least 6 and up to 26 of the 32 test bacteria. Inhibition zones were found to range between 9-32 mm diameters at a concentration of 10 mg/ml. The minimum inhibitory concentrations (MICs) of the crude extracts ranged from 0.039 - 10 mg/ml and the least minimum bactericidal concentration (MBC) demonstrated was 0.625 mg/ml against a reference strain Staphylococcus aureus ATCC 6538. Time kill kinetics of all extracts revealed bacteristatic and bactericidal activities. Average Log reductions in viable cell counts for all the extracts ranged from 0.86 Log10 and 3.99 Log10 cfu/ml after 3 h interaction and 0.01 Log10 and 4.86 Log10 after 6 h interaction at MIC, 2 × MIC, 3 × MIC and 4 × MIC concentrations. Most of the extracts were speedily bactericidal at 3 × MIC and 4 × MIC resulting in over 50 % elimination of most of the test bacteria within 3 h and 6 h interaction. The partial characterization of the crude extracts by IR spectral analysis revealed possibility of terpenoid, long chain fatty acids and secondary amine derivatives compounds in the extracts. It is therefore recommended that further investigation should address the relationship between the structure of the active component of the extracts and the broad spectrum activity, as well as a rapid method for large scale production and purification and whether this group of antibiotics has any application in managing human infectious disease.
- Full Text:
In vitro bioactivity of crude extracts of Lippia javanica on clinical isolates of Helicobacter pylori: preliminary phytochemical screening
- Authors: Nkomo, Lindelwa Precious
- Date: 2010
- Subjects: Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11257 , http://hdl.handle.net/10353/508 , Extracts , Helicobacter pylori , Antibiotics , Drug resistance in microorganisms , Materia medica, Vegetable
- Description: Helicobacter pylori classified as a class 1 carcinogen is a common human pathogen implicated in certain gastrointestinal diseases. Helicobacter pylori infection is acquired mainly in childhood, especially in developing countries. H. pylori infection causes peptic ulcer, duodenitis, gastritis and cancer. The growing resistance of H. pylori to antibiotics used in its treatment as well as other innate limitations of the triple therapy has necessitated a search for alternative treatment from natural sources which could be readily available, less cost effective. The antimicrobial activity of solvents (acetone, ethanol, methanol, chloroform and water) crude extracts of Lippia javanica were investigated against 31 H. pylori strains by the agar well diffusion technique. The minimum inhibitory concentration (MIC) was determined by spectrophotometric analysis at 620 nm using the broth micro dilution method and the rate of kill by broth dilution method. Phytochemical analysis was also performed. H. pylori standard strain NCTC 11638 was included as a positive control. Metronidazole and amoxicillin were used as positive control antibiotics. The ANOVA test was used to analyze the results using SPSS version 17.0. The strains were inhibited by all the extracts with inhibition zones of diameter ranging from 0-36 mm and 0-35 mm for the control antibiotic, clarithromycin. The MIC90 ranged from 0.039- 0.625 mg/mL for acetone; 0.039-1.25mg/mL for methanol, 0.00195-0.313 mg/mL for ethanol; 0.01975-2.5 mg/mL for metronidazole and 0.0048-2.5 mg/mL for amoxicillin. Acetone extract completely inhibited strain PE369C at MIC (0.1 mg/mL) and 2× MIC (0.2 mg/mL) in 18h and at ½× MIC (0.05 mg/mL) in 36h. Strain PE466C was completely inhibited at 4× MIC in 72h. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, steroids and alkaloids. The results indicate that the extracts of the leaves of L. javanica may contain compounds with anti-H. pylori activity and merits further study to identify the compounds.
- Full Text:
Synergistic potententials and isolation of bioactive compounds from the extracts of two helichrysum species indigenous to the Eastern Cape province
- Authors: Aiyegoro, Olayinka Ayobami
- Date: 2010
- Subjects: Helichrysum -- South Africa -- Eastern Cape , Antibiotics , Antioxidants , Medicinal plants -- South Africa -- Eastern Cape , Traditional medicine -- South Africa -- Eastern Cape
- Language: English
- Type: Thesis , Doctoral , PhD (Microbiology)
- Identifier: vital:11268 , http://hdl.handle.net/10353/250 , Helichrysum -- South Africa -- Eastern Cape , Antibiotics , Antioxidants , Medicinal plants -- South Africa -- Eastern Cape , Traditional medicine -- South Africa -- Eastern Cape
- Description: Helichrysum longifolium and H. pedunculatum belong to the Astereceae family and are used extensively in folkloric medicine in South Africa to manage stress-related ailments and as dressings for wounds normally encountered in circumcision rites, bruises, cuts and sores. The in vitro antibacterial time-kill studies, the synergistic potentials, the phytochemical screenings and antioxidant potentials as well as the isolation of the bioactive compounds from the extracts of these two plants were carried out in this study. The in vitro antibacterial activities and time kill regimes of crude extracts of H. pedunculatum was assessed. The extracts was active against both Gram positive and Gram negative bacteria tested at a concentration of 10 mg/ml. Minimum Inhibitory Concentration (MIC) values for all the susceptible bacteria ranged between 0.1 – 35 mg/ml. The average log reduction in viable cell count in time kill assay ranged between 0.17 Log10 to 6.37 Log10 cfu/ml after 6 h of interaction, and between 0.14 Log10 and 6.99 Log10 cfu/ml after 12 h interaction in 1 × MIC and 2 × MIC of the extract. The effect of the aqueous extract was only bacteriostatic on both reference and environmental strains and the clinical isolates were outrightly resistant to aqueous extract. This is worrisome and this could be one reason why, there is an incidence of high death rate resulting from circumcision wounds infection even after treating such wounds with H. pedunculatum leaf. In vitro antibacterial time kill studies of extracts of H. longifolium was assessed. All test bacteria were susceptible to the methanol extract, while none was susceptible to the aqueous extract. Two of the test bacteria were susceptible to the ethyl acetate extract, while ten and seven were susceptible to the acetone and chloroform extracts respectively at the test concentration of 5 mg/ml. The minimum inhibitory concentrations (MICs) ranged between 0.1 and 5.0 mg/ml, while minimum bactericidal concentrations (MBCs) ranged between 1.0 and >5 mg/ml for all the extracts. Average log reductions in viable cell counts for all the extracts ranged between 0.1 Log10 and 7.5 Log10 cfu/ml after 12 h interaction at 1 × MIC and 2 × MIC. Most of the extracts were rapidly bactericidal at 2 × MIC achieving a complete elimination of most of the test organisms within 12 h exposure time. The effect of combinations of the crude extracts of H. pedunculatum leaves and eight antibiotics was investigated by means of checkerboard and time-kill methods. In the checkerboard method, synergies of between 45.83-56.81 percent were observed and this is independent of Gram reaction, with combinations in the aqueous extract yielding largely antagonistic interactions (18.75 percent). The time kill assay also detected synergy that is independent of Gram reaction with a ≥ 3Log10 potentiation of the bactericidal activity of the test antibiotics. We conclude that the crude leaf extracts of H. pedunculatum could be potential source of broad spectrum antibiotics resistance modulating compounds. The interactions between crude extracts of H. longifolium in combination with six first-line antibiotics using both the time-kill and the checkerboard methods were carried out. The time-kill method revealed the highest bactericidal activity exemplified by a 6.7 Log10 reduction in cell density against Salmonella sp. when the extract and Penicillin G are combined at ½ × MIC. Synergistic response constituted about 65 percent, while indifference and antagonism constituted about 28.33 percent and 6.67 percent in the time kill assay, respectively. The checkerboard method also revealed that the extracts improved bactericidal effects of the antibiotics. About 61.67 percent of all the interactions were synergistic, while indifference interactions constituted about 26.67 percent and antagonistic interactions was observed in approximately 11.66 percent. The in vitro antioxidant property and phytochemical constituents of the aqueous crude leaf extracts of H. longifolium and H. pedunculatum was investigated. The scavenging activity on superoxide anions, DPPH, H2O2, NO and ABTS; and the reducing power were determined, as well as the flavonoid, proanthocyanidin and phenolic contents of the extracts. The extracts exhibited scavenging activity in all radicals tested due to the presence of relatively high total phenol and flavonoids contents in the extracts. Our findings suggest that H. longifolium and H. pedunculatum are endowed with antioxidant phytochemicals and could serve as a base for future drugs. Bioactivity-guided fractionation of the leaves of H. longifolium and H. pedunculatum yielded two known compounds. From the n-hexane fraction of H. longifolium a compound was isolated (Stigmasterol) and from the ethyl acetate fraction of H. pedunculatum another compound (β-sitosterol) was isolated. The compounds were isolated and identified using various techniques. The antimicrobial, anti-inflammatory, antioxidant, analgesic and anti-pyretic activities of these compounds have been reported in literatures. In general, the experiments and tests conducted in this study appear to have justified the folkloric medicinal uses of H. longifolium and H. pedunculatum for the treatment of stress related ailments and wound infections and make a substantial contribution to the knowledge base of the use of herbal medicine for the treatment of the microbial infections.
- Full Text:
Assessment of antibacterial potentials of Garcinia Kola seed extracts and their interactions with antibiotics
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Language: English
- Type: Thesis , Masters , MSc (Microbiology)
- Identifier: vital:11242 , http://hdl.handle.net/10353/71 , Drug resistance in microorganisms , Garcinia , Antibiotics , Medicinal plants
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal vi activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections.
- Full Text:
Assessment of antibacterial potentials of Garcinia Kola seed extracts and their interactions with antibiotics
- Authors: Sibanda, Thulani
- Date: 2007
- Subjects: Drug resistance in microorganisms , Garcinia , Antibiotics
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10353/19236 , vital:43038
- Description: The antibacterial potency of the extracts of the seed of Garcinia kola (bitter kola) was investigated in this study against a panel of referenced, environmental and clinical bacterial strains. The killing rates of the active extract as well as their potential for combination antibacterial therapy with standard antibiotics were also elucidated using standard procedures. The aqueous and acetone extracts of the seed were screened for activity against 27 bacterial isolates. The aqueous extract exhibited activity mainly against Gram positive organisms with Minimum inhibitory concentration (MIC) values ranging from 5 mgml-1 – 20 mgml-1, while the acetone extract showed activity against both Gram negative and Gram positive organisms with MIC values ranging from 10 mgml-1 - 0.156 mgml-1. The acetone extract also showed rapid bactericidal activity against Staphylococcus aureus ATCC 6538 with a 3.097 Log10 reduction in counts within 4 hours at 0.3125 mgml-1 and a 1.582 Log10 reduction against Proteus vulgaris CSIR 0030 at 5 mgml-1 after 1 hour. In addition, the aqueous, methanol and acetone extracts of the seeds also exhibited activity against four clinical strains of Staphylococcus isolated from wound sepsis specimens. The MIC values for the aqueous extract were 10 mgml-1 for all the isolates while the acetone and methanol extracts had lower values ranging from 0.3125 - 0.625 mgml-1. The acetone extract was strongly bactericidal against Staphylococcus aureus OKOH3 resulting in a 2.70 Log10 reduction in counts at 1.25 mgml-1 within 4 hours of exposure and a complete elimination of the organism after 8 hours. The bactericidal activity of the same extract against Staphylococcus aureus OKOH1 was weak, achieving only a 2.92 Log10 reduction in counts at 1.25 mgml-1 (4× MIC) in 24 hours. In the test for interactions between the acetone extract of the seeds and antibiotics, synergistic interactions were observed largely against Gram positive organisms using the FIC indices, (indices of 0.52 - 0.875) with combinations against Gram negatives yielding largely antagonistic interactions (indices of 2.0 to 5.0). Synergy (≥ 1000 times or ≥ 3 Log10 potentiation of the bactericidal activity) against both Gram negative and Gram positive organisms was detected by time kill assays mainly involving the antibiotics tetracycline, chloramphenicol, amoxycillin and penicillin G. Combinations involving erythromycin and ciprofloxacin consistently gave antagonistic or indifferent interactions. We conclude that the acetone extract of Garcinia kola seeds possess strong bactericidal activities against both Gram positive and Gram negative organisms and can be therapeutically useful in the treatment of bacterial infections including the problematic staphylococcal wound infections. In addition, the acetone extract can be a potential source of broad spectrum resistance modifying compounds that can potentially improve the performance of antibiotics in the treatment of drug resistant infections. , Thesis (MSc)-- Microbiology, University of Fort Hare, 2007
- Full Text: