Systematic effects and mitigation strategies in observations of cosmic re-ionisation with the Hydrogen Epoch of Reionization Array
- Authors: Charles, Ntsikelelo
- Date: 2024
- Subjects: Cosmology , Astrophysics , Radio astronomy , Hydrogen Epoch of Reionization Array , Epoch of reionization
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432605 , vital:72886 , DOI 10.21504/10962/432605
- Description: The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionisation (EoR). It has driven the construction of the new generation of lowfrequency radio interferometric arrays, including the Hydrogen Epoch of Reionization Array (HERA). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. However, the non-smooth instrumental response of the antenna as a result of mutual coupling complicates the calibration process by introducing non-smooth calibration errors. Additionally, incomplete sky models are typically used in calibration due to the limited depth and resolution of current source catalogues. Combined with the instrumental response, the use of incomplete sky models during calibration can result in non-smooth calibration errors. These, overall, impart spectral structure on smooth foregrounds, leading to foreground power leakage into the EoR window. In this thesis we explored the use of fringe rate filters (Parsons et al., 2016) as a mean to mitigate calibration errors resulting from the effects of mutual coupling and the use of an incomplete sky model during calibration. We found that the use of a simple notch filter mitigates calibration errors reducing the foreground power leakage into the EoR window by a factor of ∼ 102. Thyagarajan et al. (2018) proposed the use of closure phase quantities as a means to detect the 21 cm signal, which has the advantage of being independent (to first order) from calibration errors and, therefore, bypasses the need for accurate calibration. In this thesis, we explore the impact of primary beam patterns affected by mutual coupling on the closure phase. We found that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼ 104 times and is mainly caused by the unsmooth spectral structure primary of primary beam sidelobes affected by mutual coupling. This power leakage was confined to k < 0.3 pseudo h Mpc−1. Lastly, we also proposed and demonstrated an analysis technique that can be used to derive a flux scale correction in post-calibrated HERA data. We found that after applying flux scale correction to calibrated HERA data, the bandpass error reduces significantly, with an improvement of 6%. The derived flux scale correction was antenna-independent, and it can be applied to fix the overall visibility spectrum scale of H4C data post-calibration in a fashion similar to Jacobs et al. (2013). , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024
- Authors: Charles, Ntsikelelo
- Date: 2024
- Subjects: Cosmology , Astrophysics , Radio astronomy , Hydrogen Epoch of Reionization Array , Epoch of reionization
- Language: English
- Type: Academic theses , Doctoral theses , text
- Identifier: http://hdl.handle.net/10962/432605 , vital:72886 , DOI 10.21504/10962/432605
- Description: The 21 cm transition from neutral Hydrogen promises to be the best observational probe of the Epoch of Reionisation (EoR). It has driven the construction of the new generation of lowfrequency radio interferometric arrays, including the Hydrogen Epoch of Reionization Array (HERA). The main difficulty in measuring the 21 cm signal is the presence of bright foregrounds that require very accurate interferometric calibration. However, the non-smooth instrumental response of the antenna as a result of mutual coupling complicates the calibration process by introducing non-smooth calibration errors. Additionally, incomplete sky models are typically used in calibration due to the limited depth and resolution of current source catalogues. Combined with the instrumental response, the use of incomplete sky models during calibration can result in non-smooth calibration errors. These, overall, impart spectral structure on smooth foregrounds, leading to foreground power leakage into the EoR window. In this thesis we explored the use of fringe rate filters (Parsons et al., 2016) as a mean to mitigate calibration errors resulting from the effects of mutual coupling and the use of an incomplete sky model during calibration. We found that the use of a simple notch filter mitigates calibration errors reducing the foreground power leakage into the EoR window by a factor of ∼ 102. Thyagarajan et al. (2018) proposed the use of closure phase quantities as a means to detect the 21 cm signal, which has the advantage of being independent (to first order) from calibration errors and, therefore, bypasses the need for accurate calibration. In this thesis, we explore the impact of primary beam patterns affected by mutual coupling on the closure phase. We found that primary beams affected by mutual coupling lead to a leakage of foreground power into the EoR window, which can be up to ∼ 104 times and is mainly caused by the unsmooth spectral structure primary of primary beam sidelobes affected by mutual coupling. This power leakage was confined to k < 0.3 pseudo h Mpc−1. Lastly, we also proposed and demonstrated an analysis technique that can be used to derive a flux scale correction in post-calibrated HERA data. We found that after applying flux scale correction to calibrated HERA data, the bandpass error reduces significantly, with an improvement of 6%. The derived flux scale correction was antenna-independent, and it can be applied to fix the overall visibility spectrum scale of H4C data post-calibration in a fashion similar to Jacobs et al. (2013). , Thesis (PhD) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024
Statistical Analysis of the Radio-Interferometric Measurement Equation, a derived adaptive weighting scheme, and applications to LOFAR-VLBI observation of the Extended Groth Strip
- Authors: Bonnassieux, Etienne
- Date: 2019
- Subjects: Radio astronomy , Astrophysics , Astrophysics -- Instruments -- Calibration , Imaging systems in astronomy , Radio interferometers , Radio telescopes , Astronomy -- Observations
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/93789 , vital:30942
- Description: J.R.R Tolkien wrote, in his Mythopoeia, that “He sees no stars who does not see them first, of living silver made that sudden burst, to flame like flowers beneath the ancient song”. In his defense of myth-making, he formulates the argument that the attribution of meaning is an act of creation - that “trees are not ‘trees’ until so named and seen” - and that this capacity for creation defines the human creature. The scientific endeavour, in this context, can be understood as a social expression of a fundamental feature of humanity, and from this endeavour flows much understanding. This thesis, one thread among many, focuses on the study of astronomical objects as seen by the radio waves they emit. What are radio waves? Electromagnetic waves were theorised by James Clerk Maxwell (Maxwell 1864) in his great theoretical contribution to modern physics, their speed matching the speed of light as measured by Ole Christensen R0mer and, later, James Bradley. It was not until Heinrich Rudolf Hertz’s 1887 experiment that these waves were measured in a laboratory, leading to the dawn of radio communications - and, later, radio astronomy. The link between radio waves and light was one of association: light is known to behave as a wave (Young double-slit experiment), with the same propagation speed as electromagnetic radiation. Light “proper” is also known to exist beyond the optical regime: Herschel’s experiment shows that when diffracted through a prism, sunlight warms even those parts of a desk which are not observed to be lit (first evidence of infrared light). The link between optical light and unseen electromagnetic radiation is then an easy step to make, and one confirmed through countless technological applications (e.g. optical fiber to name but one). And as soon as this link is established, a question immediately comes to the mind of the astronomer: what does the sky, our Universe, look like to the radio “eye”? Radio astronomy has a short but storied history: from Karl Jansky’s serendipitous observation of the centre of the Milky Way, which outshines our Sun in the radio regime, in 1933, to Grote Reber’s hand-built back-yard radio antenna in 1937, which successfully detected radio emission from the Milky Way itself, to such monumental projects as the Square Kilometer Array and its multiple pathfinders, it has led to countless discoveries and the opening of a truly new window on the Universe. The work presented in this thesis is a contribution to this discipline - the culmination of three years of study, which is a rather short time to get a firm grasp of radio interferometry both in theory and in practice. The need for robust, automated methods - which are improving daily, thanks to the tireless labour of the scientists in the field - is becoming ever stronger as the SKA approaches, looming large on the horizon; but even today, in the precursor era of LOFAR, MeerKAT and other pathfinders, it is keenly felt. When I started my doctorate, the sheer scale of the task at hand felt overwhelming - to actually be able to contribute to its resolution seemed daunting indeed! Thankfully, as the saying goes, no society sets for itself material goals which it cannot achieve. This thesis took place at an exciting time for radio interferometry: at the start of my doctorate, the LOFAR international stations were - to my knowledge - only beginning to be used, and even then, only tentatively; MeerKAT had not yet shown its first light; the techniques used throughout my work were still being developed. At the time of writing, great strides have been made. One of the greatest technical challenges of LOFAR - imaging using the international stations - is starting to become reality. This technical challenge is the key problem that this thesis set out to address. While we only achieved partial success so far, it is a testament to the difficulty of the task that it is not yet truly resolved. One of the major results of this thesis is a model of a bright resolved source near a famous extragalactic field: properly modeling this source not only allows the use of international LOFAR stations, but also grants deeper access to the extragalactic field itself, which is otherwise polluted by the 3C source’s sidelobes. This result was only achieved thanks to the other major result of this thesis: the development of a theoretical framework with which to better understand the effect of calibration errors on images made from interferometric data, and an algorithm to strongly mitigate them. The structure of this manuscript is as follows: we begin with an introduction to radio interferometry, LOFAR, and the emission mechanisms which dominate for our field of interest. These introductions are primarily intended to give a brief overview of the technical aspects of the data reduced in this thesis. We follow with an overview of the Measurement Equation formalism, which underpins our theoretical work. This is the keystone of this thesis. We then show the theoretical work that was developed as part of the research work done during the doctorate - which was published in Astronomy & Astrophysics. Its practical application - a quality-based weighting scheme - is used throughout our data reduction. This data reduction is the next topic of this thesis: we contextualise the scientific interest of the data we reduce, and explain both the methods and the results we achieve.
- Full Text:
- Date Issued: 2019
- Authors: Bonnassieux, Etienne
- Date: 2019
- Subjects: Radio astronomy , Astrophysics , Astrophysics -- Instruments -- Calibration , Imaging systems in astronomy , Radio interferometers , Radio telescopes , Astronomy -- Observations
- Language: English
- Type: text , Thesis , Doctoral , PhD
- Identifier: http://hdl.handle.net/10962/93789 , vital:30942
- Description: J.R.R Tolkien wrote, in his Mythopoeia, that “He sees no stars who does not see them first, of living silver made that sudden burst, to flame like flowers beneath the ancient song”. In his defense of myth-making, he formulates the argument that the attribution of meaning is an act of creation - that “trees are not ‘trees’ until so named and seen” - and that this capacity for creation defines the human creature. The scientific endeavour, in this context, can be understood as a social expression of a fundamental feature of humanity, and from this endeavour flows much understanding. This thesis, one thread among many, focuses on the study of astronomical objects as seen by the radio waves they emit. What are radio waves? Electromagnetic waves were theorised by James Clerk Maxwell (Maxwell 1864) in his great theoretical contribution to modern physics, their speed matching the speed of light as measured by Ole Christensen R0mer and, later, James Bradley. It was not until Heinrich Rudolf Hertz’s 1887 experiment that these waves were measured in a laboratory, leading to the dawn of radio communications - and, later, radio astronomy. The link between radio waves and light was one of association: light is known to behave as a wave (Young double-slit experiment), with the same propagation speed as electromagnetic radiation. Light “proper” is also known to exist beyond the optical regime: Herschel’s experiment shows that when diffracted through a prism, sunlight warms even those parts of a desk which are not observed to be lit (first evidence of infrared light). The link between optical light and unseen electromagnetic radiation is then an easy step to make, and one confirmed through countless technological applications (e.g. optical fiber to name but one). And as soon as this link is established, a question immediately comes to the mind of the astronomer: what does the sky, our Universe, look like to the radio “eye”? Radio astronomy has a short but storied history: from Karl Jansky’s serendipitous observation of the centre of the Milky Way, which outshines our Sun in the radio regime, in 1933, to Grote Reber’s hand-built back-yard radio antenna in 1937, which successfully detected radio emission from the Milky Way itself, to such monumental projects as the Square Kilometer Array and its multiple pathfinders, it has led to countless discoveries and the opening of a truly new window on the Universe. The work presented in this thesis is a contribution to this discipline - the culmination of three years of study, which is a rather short time to get a firm grasp of radio interferometry both in theory and in practice. The need for robust, automated methods - which are improving daily, thanks to the tireless labour of the scientists in the field - is becoming ever stronger as the SKA approaches, looming large on the horizon; but even today, in the precursor era of LOFAR, MeerKAT and other pathfinders, it is keenly felt. When I started my doctorate, the sheer scale of the task at hand felt overwhelming - to actually be able to contribute to its resolution seemed daunting indeed! Thankfully, as the saying goes, no society sets for itself material goals which it cannot achieve. This thesis took place at an exciting time for radio interferometry: at the start of my doctorate, the LOFAR international stations were - to my knowledge - only beginning to be used, and even then, only tentatively; MeerKAT had not yet shown its first light; the techniques used throughout my work were still being developed. At the time of writing, great strides have been made. One of the greatest technical challenges of LOFAR - imaging using the international stations - is starting to become reality. This technical challenge is the key problem that this thesis set out to address. While we only achieved partial success so far, it is a testament to the difficulty of the task that it is not yet truly resolved. One of the major results of this thesis is a model of a bright resolved source near a famous extragalactic field: properly modeling this source not only allows the use of international LOFAR stations, but also grants deeper access to the extragalactic field itself, which is otherwise polluted by the 3C source’s sidelobes. This result was only achieved thanks to the other major result of this thesis: the development of a theoretical framework with which to better understand the effect of calibration errors on images made from interferometric data, and an algorithm to strongly mitigate them. The structure of this manuscript is as follows: we begin with an introduction to radio interferometry, LOFAR, and the emission mechanisms which dominate for our field of interest. These introductions are primarily intended to give a brief overview of the technical aspects of the data reduced in this thesis. We follow with an overview of the Measurement Equation formalism, which underpins our theoretical work. This is the keystone of this thesis. We then show the theoretical work that was developed as part of the research work done during the doctorate - which was published in Astronomy & Astrophysics. Its practical application - a quality-based weighting scheme - is used throughout our data reduction. This data reduction is the next topic of this thesis: we contextualise the scientific interest of the data we reduce, and explain both the methods and the results we achieve.
- Full Text:
- Date Issued: 2019
- «
- ‹
- 1
- ›
- »