BODIPY and porphyrin dyes for direct glucose sensing and optical limiting applications
- Authors: Ndebele, Nobuhle
- Date: 2019
- Subjects: Boron compounds , Boric acid , Porphyrins , Dyes and dying -- Chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97221 , vital:31412
- Description: A series of BODIPY dyes functionalised with boronic acid in the 3,5-positions were successfully synthesised and characterised by using various analytical techniques. The dyes were prepared through a slight modification of the conventional acid catalysed condensation method. Phenylboronic acid moieties were added as styryl groups at the 3,5-positions of the 1,3,5,7-tetrametylBODIPY cores using a modified Knoevengal condensation method. The addition of the styryls resulted in the main absorption band of the dyes red-shifting to the 630−650 nm region. The photophysical and electrochemical properties of these dyes were studied to determine whether the dyes are suitable for use in the fluorescent, colourimetric and electrochemical detection of glucose. Boronic acid moieties were added as bioreceptor recognition elements because they have an affinity for carbohydrates and therefore would be able to bind and “detect” glucose. The series of BODIPY dyes did not show a “turn-on” fluorescence effect upon addition with glucose at the physiological pH. This was attributed on the basis of molecular modelling to the absence of an MO localised on the boronic-acid-substituted styryl moieties that lie close in energy to the HOMO and LUMO that facilitates the formation of an intramolecular charge transfer state. However, colourimetric changes that are visible to the naked eye are observed at basic pH when glucose was added to the dye solutions. The dyes exhibited favourable electrochemical behaviour and were able to detect glucose directly in this context when glassy carbon electrodes are modified through the drop dry method. A series of Sn(IV) porphyrins with thienyl and phenyl groups at the meso-positions were successfully synthesised and characterised. Pyridine and tetrabutyl axial ligands were added to the porphyrins to limit aggregation. The optical limiting properties of these porphyrins and three styrylated BODIPY dyes were studied in benzene and dichloromethane. Dyes were also embedded in polystyrene and studied as thin films to further gauge their suitability for use in optical limiting applications. Second-order hyperpolarizability, third-order susceptibly, non-linear absorption with reversible saturable absorption and the optical limiting threshold, were the parameters studied. Three of the four porphyrins and the three styrylated BODIPY dyes showed favourable optical limiting behaviour, which was further enhanced when the dyes are embedded in polymer thin films.
- Full Text:
- Date Issued: 2019
- Authors: Ndebele, Nobuhle
- Date: 2019
- Subjects: Boron compounds , Boric acid , Porphyrins , Dyes and dying -- Chemistry
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/97221 , vital:31412
- Description: A series of BODIPY dyes functionalised with boronic acid in the 3,5-positions were successfully synthesised and characterised by using various analytical techniques. The dyes were prepared through a slight modification of the conventional acid catalysed condensation method. Phenylboronic acid moieties were added as styryl groups at the 3,5-positions of the 1,3,5,7-tetrametylBODIPY cores using a modified Knoevengal condensation method. The addition of the styryls resulted in the main absorption band of the dyes red-shifting to the 630−650 nm region. The photophysical and electrochemical properties of these dyes were studied to determine whether the dyes are suitable for use in the fluorescent, colourimetric and electrochemical detection of glucose. Boronic acid moieties were added as bioreceptor recognition elements because they have an affinity for carbohydrates and therefore would be able to bind and “detect” glucose. The series of BODIPY dyes did not show a “turn-on” fluorescence effect upon addition with glucose at the physiological pH. This was attributed on the basis of molecular modelling to the absence of an MO localised on the boronic-acid-substituted styryl moieties that lie close in energy to the HOMO and LUMO that facilitates the formation of an intramolecular charge transfer state. However, colourimetric changes that are visible to the naked eye are observed at basic pH when glucose was added to the dye solutions. The dyes exhibited favourable electrochemical behaviour and were able to detect glucose directly in this context when glassy carbon electrodes are modified through the drop dry method. A series of Sn(IV) porphyrins with thienyl and phenyl groups at the meso-positions were successfully synthesised and characterised. Pyridine and tetrabutyl axial ligands were added to the porphyrins to limit aggregation. The optical limiting properties of these porphyrins and three styrylated BODIPY dyes were studied in benzene and dichloromethane. Dyes were also embedded in polystyrene and studied as thin films to further gauge their suitability for use in optical limiting applications. Second-order hyperpolarizability, third-order susceptibly, non-linear absorption with reversible saturable absorption and the optical limiting threshold, were the parameters studied. Three of the four porphyrins and the three styrylated BODIPY dyes showed favourable optical limiting behaviour, which was further enhanced when the dyes are embedded in polymer thin films.
- Full Text:
- Date Issued: 2019
Photophysicochemical properties and surface-enhanced Raman scattering of phthalocyanine-nanoparticle conjugates
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
- Authors: Nwahara, Nnamdi
- Date: 2019
- Subjects: Boron compounds , Electrochemistry , Phthalocyanines , Nanoparticles , Bioconjugates , Raman effect
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/71647 , vital:29928
- Description: This work presents the synthesis, photophysical and photochemical characterization of a series of metallophthalocyanines (MPcs) and boron dipyrromethene (BODIPY) and their conjugates with either gold or silver nanoparticles (AuNPs or AgNPs) or graphene quantum dots (GQDs). The rich π-electron systems of GQDs and MPcs employed in this work enabled the coordination of MPcs to GQDs (either as pristine or modified) via the non-covalent (π-π stacking) method. GQDs, AuNPs and AgNPs were also functionalized with L-glutathione (GSH) in order to assist coupling to the Pcs or BODIPY dye. Spectroscopic and microscopic studies confirmed the formation of the respective nanoparticles (NPs) as well as the conjugates which exhibited enhanced photophysicochemical properties in comparison to the phthalocyanines (Pcs) or BODIPY alone. This work also shows that the incorporation of folic acid (FA) into Pcs-NPs composites leads to further enhancements in the singlet oxygen generation capabilities of the resulting conjugates, and so experimentally demonstrates for the first time, a synergy between FA and the respective nanoparticles (GQDs, AuNPs and AgNPs) in affecting the photophysical properties of Pcs complexes. GQDs and Pcs/GQDs hybrids were also herein decorated with AuNPs – metallic nanostructures that employ localized surface plasmon resonances to capture or radiate electromagnetic waves at optical frequencies. These nanostructures herein reported, have been shown to possess enhanced light-matter properties, enabling unique surface-enhanced Raman scattering (SERS) behaviours, with unprecedented enhancement factors of up to 30-fold. This work therefore, reports on the fabrication of Pc/GQDs/AuNPs hybrids and experimentally demonstrates their incredible potential as novel Raman-active PDT agents.
- Full Text:
- Date Issued: 2019
Synthesis, characterisation and evaluation of benzoxaborole-based hybrids as antiplasmodial agents
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017
- Authors: Gumbo, Maureen
- Date: 2017
- Subjects: Malaria Chemotherapy , Antimalarials , Boron compounds , Drug resistance , Plasmodium falciparum , Drug development
- Language: English
- Type: Master's theses , text
- Identifier: http://hdl.handle.net/10962/59193 , vital:27456
- Description: Malaria is a mosquito-borne disease, which continues to pose a threat to the entire humanity. About 40% of the world population is estimated to be at risk of infections by malaria. Despite efforts undertaken by scientific community, government entities and international organizations, malaria is still rampant. The major problem is drug resistance, where the Plasmodium spp have over the past decades developed drug resistance against available drugs. In order to counter this problem, novel antimalarial drugs that are efficacious and with novel mode of action are of great necessity. Benzoxaborole derivatives have been shown to exhibit promising antimalarial activity against Plasmodium falciparum strains. Previous studies reported on the compounds such as 6-(2- (alkoxycarbonyl)pyrazinyl-5-oxy)-1,3-dihydro-1-hydroxy-2,1-benzoxaboroles, which showed good antimalarial activity against both W7 and 3D7 strains without significant toxicity. On the other hand, chloroquine (CQ) and cinnamic acids have a wide variety of biological activity including antimalarial activity. Herein, a hybridisation strategy was employed to synthesise new CQ-benzoxaborole and cinnamoyl-benzoxaborole hybrids. CQ-Benzoxaborole 2.12a-c and cinnamoylbenzoxaborole 2.11a-g hydrid molecules were synthesised in low to good yields. Their structural identities were confirmed using conventional spectroscopic techniques (1H and 13C NMR, and mass spectrometry). CQ-benzoxaborole compounds, however, showed instability, and only 2.12b was used for in vitro biological assay and showed activity comparable to CQ. Furthermore, in vitro biological assay revealed that compounds 2.11a-g poorly inhibited the growth of P. falciparum parasites. Interestingly, these compounds, however, exhibited satisfactory activity against Trypanosoma brucei with IC50 = 0.052 μM for compound 2.11g. The cell cytotoxicity assay of all final compounds confirmed that all CQ-benzoxaborole 2.12b and cinnamoyl-benzoxaborole 2.11a-g hybrids were non-toxic against HeLa cell lines. However, efforts to further expand the structure-activity relationship (SAR) of CQbenzoxaborole by increasing the length of the linker with one extra carbon (Scheme 2.10) were not possible as an important precursor 6-formylbenzoxaborole 2.29 could not be synthesized in sufficient yields. , Thesis (MSc) -- Faculty of Faculty of Science, Chemistry, 2017
- Full Text:
- Date Issued: 2017
- «
- ‹
- 1
- ›
- »