Baculovirus synergism for improved management of false codling moth Thaumatotibia leucotreta Meyr. (Lepidoptera: Tortricidae)
- Authors: Taylor, David Graham
- Date: 2021-04
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Biological control , Biological pest control agents , Citrus -- Diseases and pests , Codling moth , Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV)
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/176942 , vital:42774
- Description: Baculoviruses are an environmentally friendly and effective agent for managing lepidopteran pests. This includes the management of Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a serious pest of citrus in Southern Africa and a major threat to the South African citrus export industry. For more than 15 years, CrleGV-SA- based biopesticides have been used as part of an integrated pest management strategy for the control of T. leucotreta in citrus orchards in South Africa, under the names Cryptogran™ and Cryptex®. While these biopesticides have been effective during this period, there are some areas in which baculovirus use could potentially be improved. Baculoviruses are notoriously slow to kill in comparison to chemical-based pesticides, and lately, pest resistance to baculoviruses has become a major concern with the development of resistance by Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) to its granulovirus occurring in the field in Europe. The consistent use of CrleGV-SA for more than 15 years in the field has raised concern that T. leucotreta could develop resistance to this virus, and has made it necessary to alter baculovirus-based management strategies to prevent this from occurring. A second baculovirus, Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV), has recently been isolated and was shown to be effective against T. leucotreta. However, the interactions between CrleGV-SA and CrpeNPV are not yet understood and so it is important to test these interactions before both viruses are applied on the same orchards. Not only is it important to know whether these viruses could negatively impact each other, but it is also important to test whether they could interact synergistically. A synergistic interaction could not only provide a potential tool for the management of resistance, but it could also be exploited to improve baculovirus-based management of T. leucotreta. In this study, a stock of CrleGV-SA was purified by glycerol gradient centrifugation from T. leucotreta cadavers, while a stock of CrpeNPV purified from Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae) cadavers was provided by River Bioscience (Pty) Ltd. These stocks were screened for purity by a multiplex polymerase chain reaction (mPCR) protocol designed to detect CrleGV-SA and CrpeNPV. The occlusion body (OB) density was then calculated using darkfield microscopy and a counting chamber. Both stocks were shown to be pure within the limits of the mPCR protocol, and the CrleGV-SA and CrpeNPV stocks were calculated to contain 3.08 × 1011 OBs/mL and 1.92 × 1011 OBs/mL respectively The first aspect of the interaction between CrleGV-SA and CrpeNPV that was investigated was the dose mortality, in terms of lethal concentration. This was calculated using 7-day surface-dose biological assays for each virus and a 1:1 mixture of OBs of the two against T. leucotreta neonates. The lethal concentrations of each treatment required to kill 50 % of larvae (LC50) and 90 % of larvae (LC90) for each treatment were then calculated and compared using a probit regression. The mixed infection performed significantly better than either virus by itself, while each virus by itself did not differ significantly from the other. The LC50 for CrleGV-SA, CrpeNPV and the mixed infection were 1.53 × 104 OBs/mL, 1.15 × 104 OBs/mL and 4.38 × 103 OBs/mL respectively. The LC90 of CrleGV-SA, CrpeNPV and the mixed infection were calculated to be 4.10 × 105 OBs/mL, 1.05 × 105 OBs/mL, and 4.09 × 104 OBs/mL respectively. The second aspect of the interaction between CrleGV-SA and CrpeNPV that was investigated was the speed of kill. A time-response biological assay protocol was created that allowed for effective observation of the larvae. This was then used to generate time-mortality data that were analysed by a logit regression function to calculate and compare the treatments at the time of 50 % larval mortality (LT50) and the time of 90 % mortality (LT90). Each virus by itself did not differ significantly from the other, while the mixed infection took significantly longer to kill 50 % and 90 % of the larvae, suggesting that there is competition for resources between viruses during the secondary, systemic phase of infection. The LT50 for CrleGV-SA, CrpeNPV and the mixed infection were 117.5 hours, 113.5 hours and 139.0 hours respectively. The LT90 for CrleGV-SA, CrpeNPV and the mixed infection were 153.2 hours, 159.3, and 193.4 hours respectively. Finally, the composition of OBs recovered from the cadavers produced by the time-response biological assays were investigated by mPCR. A method for extracting gDNA from OBs in neonate-sized T. leucotreta larvae is described. The presence of CrpeNPV along with CrleGV-SA was noted in 4 out of 9 larvae inoculated with only CrleGV-SA. The presence of CrleGV-SA as well as CrpeNPV was noted in all but one larva inoculated with only CrpeNPV, and both CrleGV-SA and CrpeNPV were noted in all but one larva inoculated with a 1:1 mixture of the two, with one larva only being positive for CrleGV-SA. This suggests either stock contamination or the presence of covert infections of CrleGV-SA and CrpeNPV in the T. leucotreta population used in this study. This is the second study to report an improved lethal concentration of a mixed infection of CrleGV-SA and CrpeNPV against T. leucotreta neonates, and the first study to report the slower speed of kill of a mixed infection of CrleGV-SA and CrpeNPV against T. leucotreta neonates. While the improved lethal concentration of the mixed infection is a promising step in the future improvement of baculovirus-based biopesticides, it is at the cost of a slower speed of kill. , Thesis (MSc) -- Faculty of Science, Department of Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-04
- Authors: Taylor, David Graham
- Date: 2021-04
- Subjects: Baculoviruses , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Biological control , Biological pest control agents , Citrus -- Diseases and pests , Codling moth , Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV)
- Language: English
- Type: thesis , text , Masters , MSc
- Identifier: http://hdl.handle.net/10962/176942 , vital:42774
- Description: Baculoviruses are an environmentally friendly and effective agent for managing lepidopteran pests. This includes the management of Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae), a serious pest of citrus in Southern Africa and a major threat to the South African citrus export industry. For more than 15 years, CrleGV-SA- based biopesticides have been used as part of an integrated pest management strategy for the control of T. leucotreta in citrus orchards in South Africa, under the names Cryptogran™ and Cryptex®. While these biopesticides have been effective during this period, there are some areas in which baculovirus use could potentially be improved. Baculoviruses are notoriously slow to kill in comparison to chemical-based pesticides, and lately, pest resistance to baculoviruses has become a major concern with the development of resistance by Cydia pomonella (Linnaeus) (Lepidoptera: Tortricidae) to its granulovirus occurring in the field in Europe. The consistent use of CrleGV-SA for more than 15 years in the field has raised concern that T. leucotreta could develop resistance to this virus, and has made it necessary to alter baculovirus-based management strategies to prevent this from occurring. A second baculovirus, Cryptophlebia peltastica nucleopolyhedrovirus (CrpeNPV), has recently been isolated and was shown to be effective against T. leucotreta. However, the interactions between CrleGV-SA and CrpeNPV are not yet understood and so it is important to test these interactions before both viruses are applied on the same orchards. Not only is it important to know whether these viruses could negatively impact each other, but it is also important to test whether they could interact synergistically. A synergistic interaction could not only provide a potential tool for the management of resistance, but it could also be exploited to improve baculovirus-based management of T. leucotreta. In this study, a stock of CrleGV-SA was purified by glycerol gradient centrifugation from T. leucotreta cadavers, while a stock of CrpeNPV purified from Cryptophlebia peltastica (Meyrick) (Lepidoptera: Tortricidae) cadavers was provided by River Bioscience (Pty) Ltd. These stocks were screened for purity by a multiplex polymerase chain reaction (mPCR) protocol designed to detect CrleGV-SA and CrpeNPV. The occlusion body (OB) density was then calculated using darkfield microscopy and a counting chamber. Both stocks were shown to be pure within the limits of the mPCR protocol, and the CrleGV-SA and CrpeNPV stocks were calculated to contain 3.08 × 1011 OBs/mL and 1.92 × 1011 OBs/mL respectively The first aspect of the interaction between CrleGV-SA and CrpeNPV that was investigated was the dose mortality, in terms of lethal concentration. This was calculated using 7-day surface-dose biological assays for each virus and a 1:1 mixture of OBs of the two against T. leucotreta neonates. The lethal concentrations of each treatment required to kill 50 % of larvae (LC50) and 90 % of larvae (LC90) for each treatment were then calculated and compared using a probit regression. The mixed infection performed significantly better than either virus by itself, while each virus by itself did not differ significantly from the other. The LC50 for CrleGV-SA, CrpeNPV and the mixed infection were 1.53 × 104 OBs/mL, 1.15 × 104 OBs/mL and 4.38 × 103 OBs/mL respectively. The LC90 of CrleGV-SA, CrpeNPV and the mixed infection were calculated to be 4.10 × 105 OBs/mL, 1.05 × 105 OBs/mL, and 4.09 × 104 OBs/mL respectively. The second aspect of the interaction between CrleGV-SA and CrpeNPV that was investigated was the speed of kill. A time-response biological assay protocol was created that allowed for effective observation of the larvae. This was then used to generate time-mortality data that were analysed by a logit regression function to calculate and compare the treatments at the time of 50 % larval mortality (LT50) and the time of 90 % mortality (LT90). Each virus by itself did not differ significantly from the other, while the mixed infection took significantly longer to kill 50 % and 90 % of the larvae, suggesting that there is competition for resources between viruses during the secondary, systemic phase of infection. The LT50 for CrleGV-SA, CrpeNPV and the mixed infection were 117.5 hours, 113.5 hours and 139.0 hours respectively. The LT90 for CrleGV-SA, CrpeNPV and the mixed infection were 153.2 hours, 159.3, and 193.4 hours respectively. Finally, the composition of OBs recovered from the cadavers produced by the time-response biological assays were investigated by mPCR. A method for extracting gDNA from OBs in neonate-sized T. leucotreta larvae is described. The presence of CrpeNPV along with CrleGV-SA was noted in 4 out of 9 larvae inoculated with only CrleGV-SA. The presence of CrleGV-SA as well as CrpeNPV was noted in all but one larva inoculated with only CrpeNPV, and both CrleGV-SA and CrpeNPV were noted in all but one larva inoculated with a 1:1 mixture of the two, with one larva only being positive for CrleGV-SA. This suggests either stock contamination or the presence of covert infections of CrleGV-SA and CrpeNPV in the T. leucotreta population used in this study. This is the second study to report an improved lethal concentration of a mixed infection of CrleGV-SA and CrpeNPV against T. leucotreta neonates, and the first study to report the slower speed of kill of a mixed infection of CrleGV-SA and CrpeNPV against T. leucotreta neonates. While the improved lethal concentration of the mixed infection is a promising step in the future improvement of baculovirus-based biopesticides, it is at the cost of a slower speed of kill. , Thesis (MSc) -- Faculty of Science, Department of Zoology and Entomology, 2021
- Full Text:
- Date Issued: 2021-04
Identifying volatile emissions associated with False Codling Moth infested citrus fruit
- Authors: Van der Walt, Rachel
- Date: 2012
- Subjects: Citrus -- Diseases and pests , Insect pests , Cryptophlebia leucotreta
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10343 , http://hdl.handle.net/10948/d1020056
- Description: False codling moth is a known pest of economic importance to many cultivated crops in South Africa and Africa south of the Sahara, and is particularly severe on citrus. If the fruit is infested just before harvest the chances of detecting signs of infestation are very low. As a result, the risk of packaging infested fruit and exporting them as healthy fruit is high. It is therefore a priority to develop a post-harvest technique for detection of False codling moth in citrus fruit at different levels of infestation in order to reduce phytosanitary risk. Compounds released and detected were indicative of infestation and were not insect produced but naturally produced fruit volatiles emitted at higher levels as a result of the insect within the fruit. Five major volatile compounds of interest were released by the infested oranges. These major volatile compounds include D-limonene, 3,7-dimethyl-1,3,6-octatriene, (E)-4,8-dimethyl-1,3,7-nonatriene, caryophyllene and naphthalene. Limonene was one of the most abundant volatile compounds released by the infested citrus fruit. Naphthalene, which is possibly produced due to larval feeding and development within the fruit maintained higher concentrations than controls throughout the infestation within the fruit. Naphthalene would be a good indicator of False codling moth infestation, however, not primarily for early infestation detection. A significantly higher concentration of D-limonene, 3,7-dimethyl-1,3,6-octatriene, (E)-4,8-dimethyl-1,3,7-nonatriene and naphthalene was detected using the SEP over the SPME technique. The application of an SPME procedure and the utilization of this method for detection of volatiles present in the headspace of intact infested fruit are evaluated and the possible volatile compounds diagnostic of Thaumatotibia leucotreta infestation of orange fruit and differences in volatile compound response in different orange varieties is discussed.
- Full Text:
- Date Issued: 2012
- Authors: Van der Walt, Rachel
- Date: 2012
- Subjects: Citrus -- Diseases and pests , Insect pests , Cryptophlebia leucotreta
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:10343 , http://hdl.handle.net/10948/d1020056
- Description: False codling moth is a known pest of economic importance to many cultivated crops in South Africa and Africa south of the Sahara, and is particularly severe on citrus. If the fruit is infested just before harvest the chances of detecting signs of infestation are very low. As a result, the risk of packaging infested fruit and exporting them as healthy fruit is high. It is therefore a priority to develop a post-harvest technique for detection of False codling moth in citrus fruit at different levels of infestation in order to reduce phytosanitary risk. Compounds released and detected were indicative of infestation and were not insect produced but naturally produced fruit volatiles emitted at higher levels as a result of the insect within the fruit. Five major volatile compounds of interest were released by the infested oranges. These major volatile compounds include D-limonene, 3,7-dimethyl-1,3,6-octatriene, (E)-4,8-dimethyl-1,3,7-nonatriene, caryophyllene and naphthalene. Limonene was one of the most abundant volatile compounds released by the infested citrus fruit. Naphthalene, which is possibly produced due to larval feeding and development within the fruit maintained higher concentrations than controls throughout the infestation within the fruit. Naphthalene would be a good indicator of False codling moth infestation, however, not primarily for early infestation detection. A significantly higher concentration of D-limonene, 3,7-dimethyl-1,3,6-octatriene, (E)-4,8-dimethyl-1,3,7-nonatriene and naphthalene was detected using the SEP over the SPME technique. The application of an SPME procedure and the utilization of this method for detection of volatiles present in the headspace of intact infested fruit are evaluated and the possible volatile compounds diagnostic of Thaumatotibia leucotreta infestation of orange fruit and differences in volatile compound response in different orange varieties is discussed.
- Full Text:
- Date Issued: 2012
Geographic variation in the susceptibility of false colding Moth, Thaumatotibia Leucotreta, populations to a granulovirus (CrleGV-SA)
- Authors: Opoku-Debrah, John Kwadwo
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10586 , http://hdl.handle.net/10948/984 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: The false codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae) is a serious pest of citrus and other crops in Sub-Saharan Africa. The introduction of the Cryptophlebia leucotreta granulovirus (CrleGV-SA) Cryptogran and Cryptex (biopesticides) has proven to be very effective in the control of FCM. However, markedly lower susceptibility of some codling moth (CM), Cydia pomonella (L.) populations to Cydia pomonella granulovirus (CpGV-M), another granulovirus product used in the control of CM’s in Europe have been reported. Genetic differences between FCM populations in South Africa have also been established. It is therefore possible that differences in the susceptibility of these geographically distinct FCM populations to CrleGV-SA might also exist. To investigate this phenomenon, a benchmark for pathogenecity was established. In continuation of previous work with Cryptogran against the 1st and 5th instar FCM larvae, dose-response relationships were established for all five larval instars of FCM. In surface dose-response bioassays, the LC50 values for the 2nd, 3rd and 4th instars were calculated to be 4.516 x 104, 1.662 x 105 and 2.205 x 106 occlusion bodies (OBs)/ml, respectively. The LC90 values for the 2nd, 3rd and 4th instars were calculated to be 4.287 x 106, 9.992 x 106 and 1.661 x 108 OBs/ml, respectively. Susceptibility to CrleGV-SA was found to decline with larval stage and increase with time of exposure. The protocol was used in guiding bioassays with field collected FCM larvae. Laboratory assays conducted with Cryptogran (at 1.661 x 108 OBs/ml) against field collected FCM larvae from Addo, Kirkwood, Citrusdal and Clanwilliam as well as a standard laboratory colony, showed a significant difference in pathogenecity in only one case. This significant difference was observed between 5th instars from the Addo colony and 5th instars from the other populations. Four geographically distinct FCM colonies from Addo, Citrusdal, Marble Hall and Nelspruit were also established. Since Cryptogran and Cryptex are always targeted against 1st instar FCM larvae in the field, further comparative laboratory assays were conducted with the Addo colony and an old laboratory colony. Cryptogran was significantly more pathogenic than Cryptex against both the Addo and the old colony. However, a high level of heterogeneity was observed in responses within each population.
- Full Text:
- Date Issued: 2008
- Authors: Opoku-Debrah, John Kwadwo
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MTech
- Identifier: vital:10586 , http://hdl.handle.net/10948/984 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: The false codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyrick) (Lepidoptera: Tortricidae) is a serious pest of citrus and other crops in Sub-Saharan Africa. The introduction of the Cryptophlebia leucotreta granulovirus (CrleGV-SA) Cryptogran and Cryptex (biopesticides) has proven to be very effective in the control of FCM. However, markedly lower susceptibility of some codling moth (CM), Cydia pomonella (L.) populations to Cydia pomonella granulovirus (CpGV-M), another granulovirus product used in the control of CM’s in Europe have been reported. Genetic differences between FCM populations in South Africa have also been established. It is therefore possible that differences in the susceptibility of these geographically distinct FCM populations to CrleGV-SA might also exist. To investigate this phenomenon, a benchmark for pathogenecity was established. In continuation of previous work with Cryptogran against the 1st and 5th instar FCM larvae, dose-response relationships were established for all five larval instars of FCM. In surface dose-response bioassays, the LC50 values for the 2nd, 3rd and 4th instars were calculated to be 4.516 x 104, 1.662 x 105 and 2.205 x 106 occlusion bodies (OBs)/ml, respectively. The LC90 values for the 2nd, 3rd and 4th instars were calculated to be 4.287 x 106, 9.992 x 106 and 1.661 x 108 OBs/ml, respectively. Susceptibility to CrleGV-SA was found to decline with larval stage and increase with time of exposure. The protocol was used in guiding bioassays with field collected FCM larvae. Laboratory assays conducted with Cryptogran (at 1.661 x 108 OBs/ml) against field collected FCM larvae from Addo, Kirkwood, Citrusdal and Clanwilliam as well as a standard laboratory colony, showed a significant difference in pathogenecity in only one case. This significant difference was observed between 5th instars from the Addo colony and 5th instars from the other populations. Four geographically distinct FCM colonies from Addo, Citrusdal, Marble Hall and Nelspruit were also established. Since Cryptogran and Cryptex are always targeted against 1st instar FCM larvae in the field, further comparative laboratory assays were conducted with the Addo colony and an old laboratory colony. Cryptogran was significantly more pathogenic than Cryptex against both the Addo and the old colony. However, a high level of heterogeneity was observed in responses within each population.
- Full Text:
- Date Issued: 2008
Understanding and improving the residual efficacy of the cryptophlebia leucotreta granulovirus (Cryptogran)
- Authors: Kirkman, Wayne
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5794 , http://hdl.handle.net/10962/d1005482 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: False codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), is one of the most important pests on citrus. The Cryptophlebia leucotreta granulovirus (CrleGV) has been developed into a successful biological control agent, registered under the name Cryptogran, and is currently the preferred product for the control of FCM on citrus in South Africa. A prerequisite to the continued success of Cryptogran as a means of controlling false codling moth is to understand the factors affecting field persistence of the virus, and to find ways to improve it. The aim of this study was to gain a clearer understanding of the product and the abiotic and biotic factors affecting its persistence in the field, and to investigate methods to improve this persistence. The effect of UV-irradiation on the virus was determined, and various products were tested as UV protectants in laboratory bioassays. Lignin was the most effective additive, and was tested in several field trials, where it also enhanced the efficacy of Cryptogran. Laboratory trials indicated that Cryptogran is rainfast. Cryptogran applications early in the season had a longer period of residual activity than sprays applied closer to harvest. Daytime applications were less effective that evening sprays. Sprays applied coinciding with peaks in pheromone moth trap catches were more effective than those applied between peaks. Biotic factors influencing persistence were investigated. Residual efficacy was longer when treatments were applied to blocks than as single tree treatments. Attempts were made to quantify the effect of the navel end of a navel orange on the field persistence of Cryptogran. Cryptogran was shown to be compatible with many agricultural chemicals used on citrus. Economic thresholds and various cost-benefit analyses are discussed. A list of practical recommendations to growers was drawn up, and possibilities for future research are presented.
- Full Text:
- Date Issued: 2008
- Authors: Kirkman, Wayne
- Date: 2008
- Subjects: Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5794 , http://hdl.handle.net/10962/d1005482 , Cryptophlebia leucotreta , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Citrus -- Diseases and pests
- Description: False codling moth (FCM), Thaumatotibia (=Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), is one of the most important pests on citrus. The Cryptophlebia leucotreta granulovirus (CrleGV) has been developed into a successful biological control agent, registered under the name Cryptogran, and is currently the preferred product for the control of FCM on citrus in South Africa. A prerequisite to the continued success of Cryptogran as a means of controlling false codling moth is to understand the factors affecting field persistence of the virus, and to find ways to improve it. The aim of this study was to gain a clearer understanding of the product and the abiotic and biotic factors affecting its persistence in the field, and to investigate methods to improve this persistence. The effect of UV-irradiation on the virus was determined, and various products were tested as UV protectants in laboratory bioassays. Lignin was the most effective additive, and was tested in several field trials, where it also enhanced the efficacy of Cryptogran. Laboratory trials indicated that Cryptogran is rainfast. Cryptogran applications early in the season had a longer period of residual activity than sprays applied closer to harvest. Daytime applications were less effective that evening sprays. Sprays applied coinciding with peaks in pheromone moth trap catches were more effective than those applied between peaks. Biotic factors influencing persistence were investigated. Residual efficacy was longer when treatments were applied to blocks than as single tree treatments. Attempts were made to quantify the effect of the navel end of a navel orange on the field persistence of Cryptogran. Cryptogran was shown to be compatible with many agricultural chemicals used on citrus. Economic thresholds and various cost-benefit analyses are discussed. A list of practical recommendations to growers was drawn up, and possibilities for future research are presented.
- Full Text:
- Date Issued: 2008
Investigation of the larval parasitoids of the false codling moth, Cryptophlebia Leucotreta (Meyrick) (Lepidoptera: Tortricidae), on citrus in South Africa
- Authors: Sishuba, Nomahlubi
- Date: 2004
- Subjects: Cryptophlebia leucotreta , Tortricidae , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Parasitoids , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5918 , http://hdl.handle.net/10962/d1016267
- Description: The study examined the larval parasitoids of Cryptophlebia leucotreta (Meyrick) on citrus in South Africa and aimed to improve the existing rearing techniques of C. leucotreta with a view to mass rearing of biological control agents. The biological characteristics of Agathis bishopi Nixon (Hymenoptera: Braconidae) were studied, with an emphasis on parasitism rates in the field, host stage preference, developmental rate, life span and offspring sex ratios. Two larval parasitoids, A. bishopi and Apophua leucotretae (Wilkinson) (Hymenoptera: Ichneumonidae), and an egg parasitoid, Trichogrammatoidea cryptophlebiae Nagaraja (Hymenoptera: Trichogrammatidae), were recorded on C. leucotreta on citrus. A. bishopi was the more abundant of the larval parasitoids and exhibited density dependent parasitism. The highest parasitism rates were observed in December with up to 38% in Sundays River Valley and 34% in Gamtoos River Valley, at a time when the highest false codling moth infestations were observed. Agathis bishopi was recorded only in the Eastern Cape Province. The sex ratio of A. bishopi was biased towards females throughout the study (77% in Gamtoos River Valley and 72% in Sundays River Valley). Agathis bishopi is a solitary, koinobiont, larval-pupal endoparasitoid. The species showed a preference for 1st and 2"d instar hosts. Females regulate the sex of their progeny according to the size and larval stage of the host, ovipositing unfertilised eggs in younger, smaller larvae (1st instars) and fertilised eggs in older, larger larvae (2nd instars). The developmental rate of A. bishopi is in synchrony with that of the moth and adults emerge when adult moths that have escaped parasitism emerge. Agathis bishopi and T. cryptophlebiae compliment each other because they have different niches and strategies of attack. Integrating A. bishopi and T. cryptophlebiae into the management of citrus orchards has potential to suppress false codling moth. Larger rearing containers seemed ideal for large-scale rearing of false codling moth. A higher percentage of adults was obtained from larvae reared in larger containers than in smaller ones. The width of the sponges used as stoppers prevented escape of the larvae. Media prepared in larger containers are easier and simpler to prepare than in smaller ones, thus eliminating many precautions otherwise necessary to prevent contamination. Moth production was greatly reduced by the high concentration of Sporekill used for egg decontamination.
- Full Text:
- Date Issued: 2004
- Authors: Sishuba, Nomahlubi
- Date: 2004
- Subjects: Cryptophlebia leucotreta , Tortricidae , Cryptophlebia leucotreta -- Control , Pests -- Biological control , Parasitoids , Citrus -- Diseases and pests
- Language: English
- Type: Thesis , Masters , MSc
- Identifier: vital:5918 , http://hdl.handle.net/10962/d1016267
- Description: The study examined the larval parasitoids of Cryptophlebia leucotreta (Meyrick) on citrus in South Africa and aimed to improve the existing rearing techniques of C. leucotreta with a view to mass rearing of biological control agents. The biological characteristics of Agathis bishopi Nixon (Hymenoptera: Braconidae) were studied, with an emphasis on parasitism rates in the field, host stage preference, developmental rate, life span and offspring sex ratios. Two larval parasitoids, A. bishopi and Apophua leucotretae (Wilkinson) (Hymenoptera: Ichneumonidae), and an egg parasitoid, Trichogrammatoidea cryptophlebiae Nagaraja (Hymenoptera: Trichogrammatidae), were recorded on C. leucotreta on citrus. A. bishopi was the more abundant of the larval parasitoids and exhibited density dependent parasitism. The highest parasitism rates were observed in December with up to 38% in Sundays River Valley and 34% in Gamtoos River Valley, at a time when the highest false codling moth infestations were observed. Agathis bishopi was recorded only in the Eastern Cape Province. The sex ratio of A. bishopi was biased towards females throughout the study (77% in Gamtoos River Valley and 72% in Sundays River Valley). Agathis bishopi is a solitary, koinobiont, larval-pupal endoparasitoid. The species showed a preference for 1st and 2"d instar hosts. Females regulate the sex of their progeny according to the size and larval stage of the host, ovipositing unfertilised eggs in younger, smaller larvae (1st instars) and fertilised eggs in older, larger larvae (2nd instars). The developmental rate of A. bishopi is in synchrony with that of the moth and adults emerge when adult moths that have escaped parasitism emerge. Agathis bishopi and T. cryptophlebiae compliment each other because they have different niches and strategies of attack. Integrating A. bishopi and T. cryptophlebiae into the management of citrus orchards has potential to suppress false codling moth. Larger rearing containers seemed ideal for large-scale rearing of false codling moth. A higher percentage of adults was obtained from larvae reared in larger containers than in smaller ones. The width of the sponges used as stoppers prevented escape of the larvae. Media prepared in larger containers are easier and simpler to prepare than in smaller ones, thus eliminating many precautions otherwise necessary to prevent contamination. Moth production was greatly reduced by the high concentration of Sporekill used for egg decontamination.
- Full Text:
- Date Issued: 2004
- «
- ‹
- 1
- ›
- »