SolarKAT: a solar imaging pipeline for MeerKAT
- Authors: Samboco, Victória da Graça Gilberto
- Date: 2024-10-11
- Subjects: MeerKAT , Radio interferometers , Solar activity , Radio Interference , Data processing
- Language: English
- Type: Academic theses , Master's theses , text
- Identifier: http://hdl.handle.net/10962/465102 , vital:76573
- Description: Solar interference poses a significant challenge in radio interferometric observations, particularly with the increasing sensitivity of modern new-generation telescopes. This thesis presents the SolarKAT pipeline, a novel approach designed to mitigate solar interference in MeerKAT observations. The pipeline incorporates a series of steps, including self-calibration (second generation calibration or 2GC), precise determination of the Sun’s position, phase centre adjustments, creation of region-based masks, deconvolution, prediction, solar model subtraction, and peeling. We applied the SolarKAT pipeline to three datasets that feature the Sun in different conditions (frequency band and angular distance from the Sun to the telescope pointing position). These observations were obtained from three MeerKAT telescope surveys: ThunderKAT, MIGHTEE and LADUMA. We compared the visual images, peak fluxes, flux density, RMS and pixel distribution to evaluate the pipeline. Our results showed a notable reduction in solar interference. This is evidenced by the improved image quality, reduction in RMS and pixel distribution values, and consistent peak flux measurements after applying the pipeline. SolarKAT has not only improved the data quality but also demonstrated to be a valuable tool in producing high-quality solar images, which can be a helpful resource for solar physics and space weather forecasts. This study showcases the potential of the SolarKAT pipeline in enabling high-quality radio interferometric observations, even in the presence of solar interference. Unlike conventional methods that often discard corrupted visibilities (e.g. flagging), our approach focuses on recovering them. Additionally, the SolarKAT pipeline naturally delivers detailed images of the Sun. Our findings contribute to advancing the field of radio interferometry, providing a valuable tool for researchers seeking to enhance the accuracy of their observations and conduct studies in solar physics and space weather. , Thesis (MSc) -- Faculty of Science, Physics and Electronics, 2024
- Full Text:
- Date Issued: 2024-10-11
De-identification of personal information for use in software testing to ensure compliance with the Protection of Personal Information Act
- Authors: Mark, Stephen John
- Date: 2018
- Subjects: Data processing , Information technology -- Security measures , Computer security -- South Africa , Data protection -- Law and legislation -- South Africa , Data encryption (Computer science) , Python (Computer program language) , SQL (Computer program language) , Protection of Personal Information Act (POPI)
- Language: English
- Type: text , Thesis , Masters , MSc
- Identifier: http://hdl.handle.net/10962/63888 , vital:28503
- Description: Encryption of Personally Identifiable Information stored in a Structured Query Language Database has been difficult for a long time. This is owing to block-cipher encryption algorithms changing the length and type of the input data when encrypted, which cannot subsequently be stored in the database without altering its structure. As the enactment of the South African Protection of Personal Information Act, No 4 of 2013 (POPI), was set in motion with the appointment of the Information Regulators Office in December 2016, South African companies are intensely focused on implementing compliance strategies and processes. The legislation, promulgated in 2013, encompasses the processing and storage of personally identifiable information (PII), ensuring that corporations act responsibly when collecting, storing and using individuals’ personal data. The Act comprises eight broad conditions that will become legislation once the new Information Regulator’s office is fully equipped to carry out their duties. POPI requires that individuals’ data should be kept confidential from all but those who specifically have permission to access the data. This means that not all members of IT teams should have access to the data unless it has been de-identified. This study tests an implementation of the Fixed Feistel 1 algorithm from the National Institute of Standards and Technology (NIST) “Special Publication 800-38G: Recommendation for Block Cipher Modes of Operation : Methods for Format-Preserving Encryption” using the LibFFX Python library. The Python scripting language was used for the experiments. The research shows that it is indeed possible to encrypt data in a Structured Query Language Database without changing the database schema using the new Format-Preserving encryption technique from NIST800-38G. Quality Assurance software testers can then run their full set of tests on the encrypted database. There is no reduction of encryption strength when using the FF1 encryption technique, compared to the underlying AES-128 encryption algorithm. It further shows that the utility of the data is not lost once it is encrypted.
- Full Text:
- Date Issued: 2018